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Understanding the spatial variability of tropical forest structure and its impact on the radar estimation of
aboveground biomass (AGB) is important to assess the scale and accuracy of mapping AGB with future low
frequency radar missions. We used forest inventory plots in old growth, secondary succession, and forest
plantations at the La Selva Biological Station in Costa Rica to examine the spatial variability of AGB and its
impact on the L-band and P-band polarimetric radar estimation of AGB at multiple spatial scales. Field
estimation of AGB was determined from tree size measurements and an allometric equation developed for
tropical wet forests. The field data showed very high spatial variability of forest structure with no spatial
dependence at a scale above 11 m in old-growth forest. Plot sizes of greater than 0.25 ha reduced the
coefficients of variation in AGB to below 20% and yielded a stationary and normal distribution of AGB over the
landscape. Radar backscatter measurements at all polarization channels were strongly positively correlated
with AGB at three scales of 0.25 ha, 0.5 ha, and 1.0 ha. Among these measurements, PHV and LHV showed
strong sensitivity to AGBb300 Mg ha−1 andAGBb150 Mg ha−1 respectively at the 1.0 ha scale. The sensitivity
varied across forest types because of differences in the effects of forest canopy and gap structure on radar
attenuation and scattering. Spatial variability of structure and speckle noise in radar measurements
contributed equally to degrading the sensitivity of the radar measurements to AGB at spatial scales less
than 1.0 ha. By using algorithms based on polarized radar backscatter, we estimated AGB with
RMSE=22.6 Mg ha−1 for AGBb300 Mg ha−1 at P-band and RMSE=23.8 Mg ha−1 for AGBb150 Mg ha−1

at L-band and with the accuracy optimized at 1-ha scale within 95% confidence interval. By adding the forest
height, estimated from the C-band Interferometry data as an independent variable to the algorithm, the AGB
estimation improved beyond the backscatter sensitivity by 20% at P-band and 40% at L-band. The results
suggested the estimation of AGB can be improved substantially from the fusion of lidar or InSAR derived forest
height with the polarimetric backscatter.
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1. Introduction

Tropical forests are among the most structurally complex and
carbon-rich ecosystems in the world. This complexity is related both
to the size–frequency distribution of woody stems (Clark & Clark,
2000; Denslow & Hartshorn, 1994) and to the three-dimensional
arrangement of canopy elements (e.g., leaves, branches, trunks) from
the top of the canopy to the ground (Richards, 1996). Fine-scale
vertical and horizontal gradients in light availability, humidity, and
temperature modify biological processes that control mortality,
recruitment, competition, and growth rates, which further modify
the spatial organization of forest structural components and species
composition (Clark et al., 1996; Nicotra et al., 1999; Oberbauer et al.,
1993; Rich et al., 1993). The aboveground biomass (AGB) of a forest
stand is directly influenced by the complexity of forest structure in
both horizontal and vertical dimensions. This complexity is related to
disturbance intensity and history and spatial variations influenced by
edaphic conditions of the forest (e.g. soil, topography) (Chazdon,
1996; Clark et al., 1998; Clark & Clark, 2000; Laurance et al., 1999).
Knowledge of forest structure and biomass across landscapes can
provide information about the magnitude of carbon stored in one of
the largest terrestrial pools, and can be used to quantify the carbon
flux caused by deforestation or natural disturbance and to model the
exchange of energy and matter between the atmosphere and forests
(Dixon et al., 1994; Perry, 1994).

http://dx.doi.org/10.1016/j.rse.2010.07.015
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Because biomass can only be measured directly through destruc-
tive sampling, it is usually estimated based on structural measure-
ments such as tree diameter and height. Although field biomass
estimation methods are useful for local-scale studies, other methods
such as interpolation by geospatial analysis or remote sensing
techniques are necessary for the inventory of biomass over extensive
regions. In both cases, the underlying spatial variability of forest
biomass must be assessed to permit accurate interpolation or
estimation from remote sensing data. In most remote sensing
techniques, an empirical correlation between estimated forest
biomass and the measurement of a forest structural parameter (e.g.
height, volume, crown size) or the intensity of EM energy (or the ratio
of energy at different wavelengths) received by the instrument is the
basis for estimation of biomass distribution over a region. Among
remote sensing techniques, active sensors such as lidar and radar
provide the measurements suitable to estimate biomass at various
spatial scales (Drake et al., 2003; Saatchi & Moghaddam, 2000).

Here we investigate the sensitivity of radar backscatter measure-
ments at two wavelengths to aboveground biomass of a Tropical Wet
Forest in Costa Rica. We examine how the spatial variability of forest
biomass and the intrinsic spatial and measurement errors in radar
observations impact the accuracy and the spatial resolution of
biomass estimation. The results are then discussed in the context of
two new spaceborne missions, DESDynl and BIOMASS, designed by
NASA and ESA (European Space Agency) respectively.

2. Study area and data

2.1. Study area

The La Selva Biological Station is located near the Sarapiquíı River
in northeast Costa Rica (Fig. 1). Over its 46-year history, La Selva has
become one of the most heavily studied tropical forests in the world
(Clark, 1990; McDade et al., 1994). This 1536-ha area is composed of a
mixture of lowland old-growth and secondary Tropical Wet Forest
(Clark & Clark, 2000; Guariguata et al., 1997; Holdridge et al., 1971),
abandoned pasture, current and abandoned plantations, and agrofor-
Fig. 1. Land use patterns and approximate location of sample plots with and su
estry plots (Menalled et al., 1998). Elevation ranges from approxi-
mately 35 to 135 m above sea level, with a north–south gradient
resulting in higher elevations and steeper slopes to the south where
the reserve borders on the Braulio Carrillo National Park. The soils at
La Selva are primarily a mixture of inceptisols (particularly in alluvial
terraces) in the north and residual ultisols to the south (Clark et al.,
1998). These variations in soil and topography do not have a major
impact on the magnitude of forest aboveground biomass, although
they do impact stem size, density, stand dynamics, wood density, and
the spatial heterogeneity of biomass (Baker et al., 2004; Chave et al.,
2005; Clark & Clark, 2000; Saatchi & Moghaddam, 2000). Because of
the variety of land cover types and the wealth of ancillary data (e.g.,
soil, topography, forest structure) available, La Selva is an excellent
site for assessing variation in forest biomass over a variety of land use
history types.

2.2. Field data

We acquired five different sets of inventory data (Table 1),
covering variations of forest structure ranging from abandoned
pasture to old-growth wet forests within and surrounding the La
Selva Biological Stations (Fig. 1).

Carbono Plots: This set included 18 0.5 ha plots (each 50 m×
100 m) that were part of the landscape-scale study of carbon
storage and flux in old-growth forests (Carbono project) (Clark &
Clark, 2000). The inventory data were collected for woody
stems≥10 cm DBH (diameter at breast height) above buttresses.
Aboveground biomass (AGB) was computed by using tropical wet
forest allometric equation developed by Brown (1997).

AGB kgð Þ = 21:297−6:95DBH + 0:740DBH2 ð1Þ

BOSQUES plots: We acquired data from four 1 ha plots from the
BOSQUES project focused on studying the dynamics of regenera-
tion in wet tropical secondary forests (Chazdon et al., 2005).
rrounding the La Selva Biological Station overlaid on Landsat ETM imagery.



Table 1
List of forest inventory plots within and surrounding La Selva Biological Station, Costa Rica.

Plot name Source No.
plots

Size Vegetation type Basal area range AGB range

ha M2 ha−1 Mg ha−1

Carbono D. Clark 18 0.5 Old growth forest 18–29 124–200
Transects S. Saatchi 6 1.0 Old secondary and primary forests 20–31 44–516

2 0.5
BOSQUES R. Chazdon 4 1.0 Secondary forest age 16–30 17–30 132–198
Peje Annex A. Russell 40 0.25 Mixed tree plantations 9–51 36–237
AIRSAR campaign plots S. Saatchi 8 1.0 Fallow and young secondary forests (age 1–12) 11–14 7–73
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Inventory data included diameter of all trees≥5 cm DBH and AGB
using allometric Eq. (1). The field data was acquired in 2004, the
same year the remote sensing data was acquired.

Remote Sensing Plots:We gathered data over 8 other 1.0 ha plots in
areas dominated by low biomass forests (two abandoned pasture,
one young secondary forest less than 10 year old, one young
fallow, two secondary forests about 10 year old and two
agroforestry sites). These plots represented biomass values
ranging from less than10 Mg ha−1 to less than 200 Mg ha−1.
Inventory of forest plots included trees≥5 cm DBH. Forest AGB
values were computed using Eq. (1). For pasture plots, woody
biomass of trees was computed using the same approach.

Transect plots: This data set was collected during 2007 field
campaign and included 6 1.0 ha (20 m×500 m) and 2 0.5 ha
(20 m×250 m) transect plots in old-growth and old secondary
forests (N20 years) within and surrounding the La Selva station. In
all transects, we measured DBH (diameter at breast height) of all
trees≥10 cm diameter above buttresses, height of trees with
visible crowns using inclinometer and laser range finder, and gap
density using the fish-eye digital photography. We divided the
transects into smaller 0.25 ha plots (20×125 m) to increase the
number of points used in remote sensing data analysis and to
capture the small scale variability in forest structure. We refer to
these plots as transect plots. Tree diameters from these transects
were transformed into AGB using the allometric Eq. (1).

ECOS Plots: The third data sets came from ECOS Project (Tree
Species Effects on Ecosystem Processes: http://www.nrem.iastate.
edu/ECOS/index.html) that included 40 0.25 ha (50 m×50 m)
plots out of 60 plots established in the Peje Annex of La Selva on a
degraded landscape with tree plantations (Russell et al., 2007).
The study area was cleared in 1955 by burning the slash and was
under pasture and grazing until 1987. The experimental plantation
was established in 1988 to study the impact of 11 native tree
species on the soil properties. The inventory data included the tree
density, diameter, height, and AGB. For these sites, species based
allometric equations were used to estimate AGB for 0.25 ha plots.

We combined all the plots to develop a new set of plots at 0.25, 0.5,
and 1.0-ha sizes for the multi-scale analysis of remote sensing data.
We compiled 92 0.25-ha plots by breaking the 0.5 and 1.0-ha plots
into 2 and 4 0.25-ha plots respectively. Similarly, we regrouped
smaller plots to create a total of 49 0.5-ha plots and 28 plots of 1.0-ha
in size. In the process, we assumed the 0.5-ha Carbono plots located
within the old-growth forests of La Selva could be combined to
represent 1.0-ha plot biomass values. This assumption was justified
after performing the analysis for the spatial variability of forest AGB
and was primarily used to allow us to combine pixels from remote
sensing data to represent the average biomass of 1.0-ha size plots.

The accuracy of AGB values estimated from field measurements
could not be assessed due to lack of destructive sampling of trees
within the study area and the use of allometric equations developed
elsewhere. However, some factors relating to the AGB accuracy were
evaluated. Data from small (0.04 ha) sampling plots within the 1.0 ha
transects showed that trees with 5 cmbDBHb10 cm contributed
approximately 5–10% of AGB, with higher numbers associated with
secondary-growth forests. The contribution of trees less than 5 cm in
DBH could be approximately the same (Montgomery & Chazdon,
2001). Other studies have shown that errors from allometric
equations in tropical forests can range from ±10% to ±25% (Brown
1997; Chave et al., 2005). Knowledge of species level allometry, wood
density, tree height, and the size of sampling plots will improve the
accuracy of AGB. In this study, we expect that the AGB values
associated with plots at various scales may have uncertainties varying
from ±5% to ±20% from young secondary-growth to old-growth
forests.

2.3. Remote sensing data

In March of 2004, the NASA/JPL (Jet Propulsion Laboratory)
airborne SAR system, AIRSAR on the NASA DC-8 aircraft acquired
polarimetric images along with simultaneous interferometric TOPSAR
data over La Selva Biological Station. The entire La Selva was covered
in various modes by changing the altitude, baseline, and repeat time
in order to develop a baseline dataset to explore the application of
polarimetric and InSAR techniques in tropical forests. The AIRSARwas
operating at P-band (435 MHz, 20 MHz bandwidth), L-band
(1.25 GHz, 40 MHz bandwidth) in fully polarimetric modes and C-
band (5.3 GHz, 40 MHz bandwidth) at vertical polarization (VV) and
interferometric mode. The polarized backscatter values derived from
these measurements are HH, HV, and VV at both L-band and P-band
frequencies, with H and V representing the horizontal and vertical
transmit and receive polarizations. Data sets used in this study are
acquired in 5 m spatial resolution at L-band and C-band and 10 m
resolution at P-band, over a 12 km wide swath with incidence angles
ranging from about 20 to 60° with approximately 45° at the center of
the swath. All images were terrain corrected using the digital
elevation data acquired by the TOPSAR interferometric modes and
ground control points (Fig. 2). The imageswere also orthorectified in a
Universal Transverse Mercator (UTM) projection using the available
Quickbird data with a large number of ground control points that
provided registration accuracy of approximately 15 m (1.5 pixels).
The radar images were kept at 10 m resolution for further data
analysis.

In addition to radar data, we had access to DEM (Digital Elevation
Model) derived from lidar data acquired by the airborne Laser
Vegetation Imaging Sensor in 2005. LVIS is a medium-altitude,
medium- to large footprint imaging laser altimeter, designed and
developed at NASA's Goddard Space Flight Center. LVIS digitizes the
entire return signal, thus, providing a waveform relating to the
vertical distribution of intercepted canopy and ground surfaces within
each footprint (Blair et al., 1999; Dubayah & Drake, 2000). From LVIS
data, we used the ground elevation (DEM) and canopy height metrics
posted at 20 m grid cell over the La Selva. The DEM was measured as
elevation above sea level and had an absolute accuracy of 3.37 m
(http://www.ots.ac.cr/). The gridded LVIS DEM and the radar images

http://www.nrem.iastate.edu/ECOS/index.html
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Fig. 2. AIRSAR polarimetric radar imagery and InSAR measured surface elevation acquired over the La Selva region in March 2004. The P-band and L-band images are false color
composites with HH as red, HV as green, and VV as blue channels.
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were co-registered to an accuracy of less than 1 pixel. The height
metrics were RH100 and RH50. RH100 is the height of the first lidar
return from the canopy minus the ground return, representing the
maximum height of the forest canopy within the lidar footprint. RH50
is the 50% quantile metric, which represents the height below which
50% of the waveform energy is located (Drake et al., 2002).
3. Methods

3.1. Spatial variation of forest biomass

We analyzed the ground data using three different methods to
understand and quantify the spatial variations of AGB. First, we
analyzed the distribution of AGB in plots ranging from 0.01-ha to 1.0-
ha by sub-dividing transect and RS plots over mature forests and old
secondary forests. Second, we analyzed the variations of AGB within
the plots by using the coefficient of variation of plot AGB. The analyses
were performed in a completely nested approach, so that all the tree
data used in 0.01 ha analyses are included in every analysis for larger
plot sizes (Clark & Clark, 2000). Third, we used variograms to test for
spatial autocorrelation in the AGB data. Variograms are a geostatistical
technique to detect spatial autocorrelation between samples of a
quantitative variable (e.g. AGB) (Isaaks & Srivastava, 1989). In a
variogram, the averaged squared difference in the value of a variable
between all pairs of plots is computed across distance intervals (lag
classes). The output is often presented as a variogram plot of the
average semivariance versus distance classes. The semivariance
converges at a distance for which values are no longer spatially
autocorrelated and are spatially independent. Three parameters
estimated from the variogram model quantify the scale of spatial
dependence: the nugget refers to y intercept and represents either the
microscale variations or measurement errors. The sill refers to
maximum value of semivariance signifying the total variance in the
data. The range refers to the distance at which the semivariance
reaches 95% of the sill. These parameters are estimated from spherical
models that are fitted to the empirical variograms using a non-linear
least squares method (Isaaks & Srivastava, 1989). All spatial statistics
were computed using GS+ software (Gamma Design Software,
Plainwell, Michigan). The empirical variograms were calculated
using AGB of 0.01-ha subplots from all Carbono and transect plots
and with a lag distance of 10 m.
3.2. Sensitivity of radar backscatter to AGB

To assess the accuracy of AGB estimation from radar measure-
ments, we examined the overall sensitivity of the radar backscatter to
AGB and quantified the errors associated with the estimation
algorithm. We investigated the impact of the spatial variation of the
forest structure and errors associated with the geolocation of the
plots, measurement geometry, and the speckle noise. In general, at
low frequencies (e.g. L-band and P-band) the radar transmitted
energy, in the form of an electromagnetic pulse, penetrates into the
forest canopy and reflects back from forest components such as
leaves, branches, stems, and underlying soil. Knowing the magnitude
of transmitted and received energy, a physical relationship, based on
electromagnetic theory, has been developed to relate the ratio of
these energies to properties of the forest. The measurements are
performed in a combination of transmit and receive polarizations (H:
Horizontal, and V: Vertical), at an off-nadir incidence angle, and at a
spatial resolution projected on the radar range direction. Therefore,
radar backscatter measurement at any frequency and polarization
combinations (e.g. HH, HV, VV) depends on two sets of parameters: 1.
Measurement geometry such as incidence angle and location and size
of the image pixels with respect to the size and the orientation of
plots. 2. Forest structural parameters such as the size (volume) and
density (number per resolution cell) of trees, orientation of the forest
components (leaves, branches, stems), underlying surface condition
(moisture, roughness, and slope), and the dielectric constant that in
turn depends on the vegetation water content or specific gravity (i.e.
the wood density). Dependence on these variables makes radar
measurements sensitive to forest AGB (Dobson et al., 1995; Saatchi &
Moghaddam, 2000).

Depending on the wavelength of the measurement, the radar
backscatter from a forest can be related to scattering from live stems,
branches, and foliage based upon their abundance and moisture
content within a resolution cell as:

σ0
pq∝fpq ηi;Vi; εið Þ ð2Þ

Where fpq is a function averaged over all possible orientation and
size distributions, and p and q represent the transmit and received
polarizations. The forest components (stems, branches, leaves) within
a unit area of the radar image pixel are represented by density of trees
ηi, volume Vi, and dielectric constant εi. Eq. (2) symbolically

image of Fig.�2


2840 S. Saatchi et al. / Remote Sensing of Environment 115 (2011) 2836–2849
represents the radar backscatter relationship to forest structure and
wood density that, along with orientation and tree size distributions,
can be used to generate a model for estimating forest volume or
biomass.

In forestry applications, this model is simplified to a parametric or
regression type relationship designed to directly estimate the AGB. To
examine the sensitivity of radar backscattermeasurements to AGB, first,
we calculate the value of backscattering coefficient at each polarization
normalized for incidence angle by normalizing the pixel value with the
cos (θ0) (Ulaby et al., 1982). The normalized value of backscattering
coefficient is shown by γpq, where p and q are either H or V and
represent the received and transmitted polarizations respectively. This
value is often represented in logarithmic scale in decibels (dB), but here
it has been transformed to linear scale in m2 m−2 for simplicity of data
analysis.We examine the value of backscattering coefficients in terms of
AGB at L-band and P-band frequencies at various spatial scales.

3.3. Estimation of AGB from radar backscatter

Estimation of AGB from radar backscatter was performed by using
a statistical regression model between AGB and the radar backscatter
at different polarizations. Based on previous studies, the regression
model was developed between an unknown power of AGB and a
linear combination of backscatter measurements at three polariza-
tions (Ranson & Sun, 1994; Saatchi et al., 2007):

AGBλ = a0 + a1γHH + a2γVV + a3γHV ð3Þ

Where the unknown coefficients (λ, a0, a1, a2, and a3) will be
determined statistically by using radar measurements and field data
at three spatial scales of 0.25, 0.5, and 1.0 ha. The analysis also
included the use of single polarization or dual-polarization radar data
in order to simulate the accuracy of AGB when only one or two
channels are available in future spaceborne radar data at L-band and
P-band. The overall form of the regression model used in this study
may not be ideal when used for all combinations of frequency and
polarizations. However, it will provide us with a simple algorithm to
test the performance of radar measurements. In the regression model,
we also assume that the backscatter coefficients are normalized by
incidence angle and have been projected on the ground using
available surface topography over La Selva. In an ideal case, where
there are large variations in surface topography, a more complex
algorithm can be developed that includes the impact of surface slope
on scattering mechanism of radar signal within the forest (Saatchi et
al., 2007).

3.4. Forest height index from InSAR measurements

In addition to the polarimetric backscatter measurements, we also
make use of the elevation measured by Interferometric SAR (InSAR)
measurements at C-band and VV polarization to estimate the
vegetation height. Over vegetated surfaces, the InSAR measures a
height below the vegetation canopy known as the height of scattering
phase center. This height is given by (Zebker & Villasenor, 1992):

hs + hsc = H−ρ cos α−θð Þ

hsc = H−hs−ρ cos α− sin−1 λΔϕ
4πB

� �� � ð4Þ

Where hs and hsc are the surface (bald earth) elevation and the
height of the scattering center respectively. The radar platform is
located at an altitude of H, the InSAR baseline distance is given by B,
and the angle by α. The phase difference measured by the radar is
given by Δϕ and the range distance to the center of the pixel is
approximately given by ρ. In Eq. (4) all parameters are given except hs
and hsc. For the surface elevation, we use the digital elevation data
provided by the lidar measurements of underlying forest surface
acquired in 2005. Once hsc is derived from Eq. (4), it can be used
directly in the regressionmodel to improve the estimation of AGB. The
value hsc represents the average forest height weighted by the canopy
density or the basal area (Sarabandi & Lin, 2000). That is, for forests of
open canopy or relatively low basal area, hsc is smaller than for forests
with dense canopy cover. We refer to hsc as the height index
throughout the paper and examine its contribution to improve the
biomass estimation using the following relationship:

AGBλ = a0 + a1γHH + a2γVV + a3γHV + a4hsc ð5Þ

Where the linear dependence on the height index is justified from
recently developed relationships between average or basal area
weighted heights and the aboveground biomass (Drake et al., 2002;
Lefsky et al., 2005).

4. Results

4.1. Spatial variability in biomass

There are various uncertainties in estimating the AGB of a sample
plot. Under the assumption that the allometric models are perfect and
the tree-level uncertainties average out at the stand level, a typical
error of 10% of the mean for AGB estimates can be encountered for
plot sizes of one-quarter of a hectare (0.25-ha) (Chave et al., 2003).
Spatial variability of forest structure, large effects of individual trees
with large DBH, lack of sampling of small trees (DBHb5 cm), and
errors in measuring DBH of trees in the field (trees with buttresses)
are the main sources of errors in estimating the biomass of a forest
stand.

First, we analyzed the distribution of AGB in old-growth forests for
sub-plots of varying sizes and tested for normality of the data (Fig. 3).
This analysis showed that at smaller sub-plots, the AGB distribution
was skewed to the left and had a large range from 0 to 1342 and 20 to
542 Mg ha−1 for of 0.01-ha (10 m×10 m) and 0.04 ha (20 m×20 m)
sub-plots respectively. For larger sub-plots (0.25–1.0 ha) we com-
bined the Carbono plots and transects to create the histograms. The
results suggested that 0.25-ha (50 m×50 m) is the minimal size
required for a normal distribution of biomass. An indicator for the
normality was the symmetric probability distribution and small
skewness and kurtosis. The Shapiro–Wilk normality test was
performed on the distributions and it was shown that for plots greater
than or equal 0.25 ha, the distributions passed the test (pN0.05).

We combined transect and Carbono plots to examine variations in
AGB with plot size in terms of the coefficient of variations (CV)
(Fig. 4). As the plot size increased, CV continued to decrease to
approximately 10% at the 1.0 ha plot size. At smaller plots, the
possibility of occurrence of a large tree can create heterogeneity in
forest structure and large variations in biomass. These variations are
averaged out at lager plot sizes. The CV values at 1.0 ha scale were
computed by using the 1.0 ha transect plots in old-growth forests and
by combining 18 0.5 ha Carbono plots to virtually generate 9 1.0 ha
plots. As the Carbono plots are separated from each other and have no
spatial correlations, we expect the CV values represent the upper
bound to the coefficient of variations at 1.0 ha scale because
contiguous 1.0 ha plots have less variations.

To assess the scale of spatial dependence, we analyzed semivar-
iograms of forest biomass for 18 Carbono plots and 8 transects.
Spherical models with lag distances of 5 to 100 m provided excellent
fits to all stands with average R2 of 0.93. In all cases, the forest biomass
showed very high spatial variability with average range of about 11m,
suggesting neighboring sub-plots from 0.01 ha in size to 1.0 ha are
statistically independent. In other words, the AGB in sub-plots in
forest stands is not significantly autocorrelated at a scale larger than



Fig. 3.Distribution of forest biomass over the old-growth forests sampled at different plot size using the Carbono and transect plots: (a) 0.01 ha plot size, (b) 0.04 plot size, (c) 0.25 ha
plot size, (d) 0.5 ha plot size, and (e) 1.0 ha plot size.
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11 m. The semivariogram analysis for La Selva plots confirmed the
results obtained in the 50-ha plot of Barro Colorado Island in Panama
(Chave et al., 2003). A similar independent study, using Carbono plots
in La Selva showed autocorrelations in forest biomass dropped to
insignificant at distances larger than 11 m (David Clark, Personal
Communication). This analysis will not provide any significant
information about the variability of the forest biomass at scales larger
than 1.0 ha.
Fig. 4. Coefficient of variation of ground-estimated aboveground biomass in relation to
plot size for old-growth forests of Carbono and transect plots.
4.2. Radar backscatter sensitivity to biomass

Normalized backscatter coefficients at HH, HV, and VV polariza-
tions were extracted from 10 m pixel resolutions for plot sizes at 0.25,
0.5, and 1.0 ha. The results for L-band and P-band frequencies are
shown in Figs. 5 and 6. A power–law relationship was the optimum fit
to the normalized backscatter data with respect to the aboveground
dry biomass in all cases. At both frequencies, the scale of analysis did
influence the relationship between AGB and backscatter. As the scale
of analysis increased from 0.25 ha to 1.0 ha, the r-squared correlation
between backscatter and AGB improved, largely due to the spatial
averaging of the radar data and the reduction of speckle noise. The
improvement from 0.25 to 0.5 ha was due to both reduction in the
speckle noise and the errors due to geolocation and orientation of the
plots. Whereas, the improvement from 0.5 to 1.0 ha plots was mostly
due to averaging a larger number of pixels and hence the reduction of
speckle noise. Although all polarizations showed similar trends with
respect to increasing AGB, there were clear distinctions among them
in terms of backscatter level and sensitivity to biomass. In both
frequencies, the HV sensitivity to biomass was much higher and the
relationship improved much higher than other channels as the scale
of measurement increased. However, at L-band the sensitivity to
biomass decreased rapidly at 100 Mg ha−1 at 0.25 ha and with
slightly higher value of 100–150 Mg ha−1 at the 1.0 ha scale.

The P-band results showed a very strong relationship to AGB over
the entire range, with gradual loss of sensitivity at AGBN200 Mg ha−1.
The r-squared correlation between P-band channels and AGB was
almost above 0.7 in all cases and improved with increases in spatial
scale.
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Fig. 5. Relationship of L-band radar backscatter power (m2 m−2) at three polarizations of HH, HV, and VV with the aboveground biomass (Mg ha−1) and at three scales: (a) 0.25 ha,
(b) 0.5 ha, and (c) 1.0 ha.

2842 S. Saatchi et al. / Remote Sensing of Environment 115 (2011) 2836–2849
To further examine the sensitivity at 1.0 ha spatial resolution, we
calculated the differences in backscatter power for every 50 Mg ha−1

and transformed the power in dB values for radar calibration
purposes. The dynamic range from low to high biomass values
averaged over all polarizations was approximately 7.0 dB for L-band
and 11 dB for P-band, with the largest portion of dynamic range for
the AGBb0–100 Mg ha−1. At the L-band frequency, the biomass
values above 100 Mg ha−1 covered less than 2 dB of backscatter
power, whereas, at P-band this range was about 4.5 dB (Table 3).

Given the overall sensitivity of backscatter power to AGB, we used
Eqs. (3) and (4) to develop regression models to estimate AGB for a
combination of polarized backscatter at L-band and P-band frequen-
cies. The first step in the regression analysis was to estimate λ, the
power of the AGB. This stepwas done using the REGRESS routine in IDL
to perform a multi-variable linear regression analysis. The estimated
values of λ for models including dual or all polarizations at L-band and
P-band ranged between 0.34 and 0.58. In order to obtain a single value
of λ for all cases, we simulated equations with λ values ranging from
0.34 to 0.58 for all model runs, and calculated the residual errors in
biomass estimation between optimum and simulated λ for all models
and choose the λ with the least residual error. In all cases, the best
relationship was found for λ=0.47. We set λ=1/2 for all regression
models for simplicity and comparability of models. The regression
Fig. 6. Relationship of P-band radar backscatter power (m2 m−2) at three polarizations of HH
(b) 0.5 ha, and (c) 1.0 ha.
models were performed for the single-polarization dual-polarization
with (HH, HV), and the quad-polarization with HH, HV, VV (HV=VH
in all measurements) backscatter power.

4.3. L-band estimation of biomass

Estimation of AGB from L-band measurements was performed for
single and multiple polarized backscatter at three spatial scales and
results are summarized in Table 2. The root-mean-squared errors
(RMSE) for the entire range were calculated by using two methods: 1.
The leave-one-out cross-validation approach where the RMSE error is
estimated by calculating the errors associated with an algorithm
developed from all sample points except one. 2. The hold-out
approach where the generalization error is estimated by retaining a
subset of sample points (20%) as validation set. For RMSE of biomass
values less than 200 and 100 Mg ha−1 we only used the leave-one-out
approach because of the limited sample size.

Errors associated with single polarization measurements were
approximately the same for HH and HV across the scales with the
exception of 1.0 ha plots where biomass estimation improved for LHV
especially for AGB b100Mg ha−1. For all scales, the error associated with
the single polarization algorithm was larger than 20% of the mean
biomass. The error reduced to approximately 10–15% for dual polarization
, HV, and VV with the aboveground biomass (Mg ha−1) and at three scales: (a) 0.25 ha,
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Table 2
Radar backscatter dynamic range and biomass estimation accuracy for a combination of
L-band and P-band polarizations at three spatial scales of 0.25 ha, 0.5 ha, and 1.0 ha.

Radar channels 0.25 ha

AGB range: 7–370.9 Mg ha−1

γ0 range R2 RMSE all RMSE (b200) RMSE (b100)

Mg ha−1 Mg ha−1 Mg ha−1

LHH −12.6, −4.8 0.42 51.6 (56.1) 43.9 42.3
LHV −20.9, −10.2 0.39 53.4 (58.2) 36.8 43.9
LVV −14.4, −5.7 0.27 62.8 (68.9) 44.5 54.4
PHH −18.2, −8.9 0.58 44.0 (47.3) 27.6 30.5
PHV −28.2, −16.4 0.67 38.8 (41.3) 34.8 38.6
PVV −20.6, −11.5 0.53 46.3 (50.1) 37.3 38.4
LHH,LHV NA 0.60 44.5 (49.6) 40.2 30.1
LHH,LHV,LVV NA 0.62 42.5 (48.2) 37.7 26.8
PHH,PHV NA 0.74 32.6 (35.3) 27.5 28.5
PHH,PHV,PVV NA 0.79 30.7 (34.1) 24.3 27.9

Radar channels 0.5 ha

AGB range: 8–295.7 Mg ha−1

γ0 range R2 RMSE all RMSE (b200) RMSE (b100)

Mg ha−1 Mg ha−1 Mg ha−1

LHH −12.6, −5.3 0.54 48.3 (53.1) 42.3 33.9
LHV −20.9, −10.7 0.58 44.5 (49.5) 38.6 32.1
LVV −14.4, −6.7 0.53 46.1 (50.2) 42.4 34.3
PHH −18.2, −9.7 0.67 43.3 (45.0) 30.34 34.1
PHV −28.2, −16.6 0.67 37.2 (39.1) 26.5 31.2
PVV −20.6, −11.9 0.65 38.5 (42.3) 35.9 35.4
LHH,LHV NA 0.58 43.5 (48.2) 37.9 35.1
LHH,LHV,LVV NA 0.62 39.5 (43.2) 34.3 34.3
PHH,PHV NA 0.80 28.6 (30.5) 24.9 24.8
PHH,PHV,PVV NA 0.83 26.6 (28.3) 23.8 21.5

Radar channels 1.0 ha

AGB range: 8.1–270.1 Mg ha−1

γ0 range R2 RMSE all RMSE (b200) RMSE (b100)

Mg ha−1 Mg ha−1 Mg ha−1

LHH −12.6, −5.3 0.67 39.6 (41.4) 29.4 23.1
LHV −20.9, −10.8 0.66 34.6 (37.7) 23.1 14.1
LVV −14.4, −6.7 0.68 38.1 (42.8) 28.7 19.8
PHH −18.2, −10.2 0.77 31.8 (34.5) 24.6 14.8
PHV −28.2, −16.6 0.86 24.6 (27.4) 23.5 12.5
PVV −20.6, −11.8 0.83 27.6 (33.3) 27.2 26.7
LHH,LHV NA 0.73 35.1 (40.2) 31.7 15.7
LHH,LHV,LVV NA 0.75 33.1 (37.1) 28.3 13.8
PHH,PHV NA 0.88 22.6 (24.3) 20.5 17.0
PHH,PHV,PVV NA 0.91 19.9 (22.2) 18.6 15.3

Table 3
Estimated regression coefficients for above-ground biomass estimation from L-band and P-

Radar channels a0 a1

0.25 ha scale
LHH,LHV,LVV −4.36 41.68±2.56
LHH,LHV,LVV, hsc −4.31 35.51±2.81
PHH,PHV,PVV −1.23 64.11±6.05
PHH,PHV,PVV, hsc −1.28 59.08±6.26

0.5 ha scale
LHH,LHV,LVV −1.91 16.49±3.32
LHH,LHV,LVV, hsc −2.06 16.93±3.65
PHH,PHV,PVV −0.31 57.96±6.36
PHH,PHV,PVV, hsc −0.51 80.48±10.28

1.0 ha scale
LHH,LHV,LVV −0.67 −7.35±4.87
LHH,LHV,LVV, hsc 1.18 3.45±4.02
PHH,PHV,PVV 0.73 42.13±13.49
PHH,PHV,PVV, hsc 0.11 98.52±17.89
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(RMSE=15.7 Mg ha−1) andall polarizations (RMSE=13.8 Mg ha−1) for
AGB b100Mg ha−1 range. Over the entire biomass range, the estimation
accuracy improvedwhenmoving from0.25 ha to1.0 ha (Fig. 7).However,
the statistics of the plot-by-plot difference between the predicted and
ground estimated biomass showed a bias towards lower values,
suggesting the L-band loss of sensitivity to predict biomass values above
a certain threshold (Fig. 8). By focusing at AGBb100Mg ha−1, the
estimation bias disappears and the error becomes approximately
normally distributed for all scales greater or equal to 0.25 ha. The biomass
threshold may be higher than 100 Mg ha−1, especially at 1.0 ha scale, if
larger errors are tolerated. However, because of the small dynamic range
of backscatter power (approximately 2 dB for AGBN100Mg ha−1), and
the errors associated with the multiple polarization algorithms, L-band
algorithms may not provide reasonable estimates for biomass values
above 100 Mg ha−1.

4.4. P-band estimation of biomass

The P-band based algorithms out-performed L-band's across
biomass ranges and spatial scales. Errors associated with single
polarized backscatter measurements were larger than 20% at 0.25 and
0.5 ha and reduced to between 10 and 20% at 1.0 ha scale. PHH and
PHV performed better than PVV over the entire biomass ranges and
scales. The accuracy of PHV estimation of biomass improved when the
scale of the analysis increased from 0.25 to 1.0 ha. Combining the
polarizations, either in dual (PHH, PHV) or multiple (PHH, PHV, PVV),
reduced RMSE to approximately 10–15% over the entire range and at
all spatial scales. Although P-band sensitivity to low biomass values
(AGBb20 Mg ha−1) is often questionable because of the influence of
soil moisture and surface roughness, at 1.0 ha spatial scale, the RMSE
for AGBb100 Mg ha−1 range was reasonably low at approximately
15 Mg ha−1. The multiple polarization algorithm was capable of
producing biomass estimates with less than 10% error for all three
scales and over the entire range (Fig. 9). At 1.0 ha spatial scale, the
RMSE from multiple polarization algorithm was bounded to 19–
23 Mg ha−1 for leave-one-out method and 22–24 Mg ha−1 for hold-
out approach. Statistics of the difference between predicted and
ground estimated AGB showed almost no estimation bias and the
errors were distributed almost normally at all scales (Fig. 10).

4.5. InSAR estimation of canopy height

The height index (hsc) was estimated from InSARmeasurements at
C-band by subtracting the InSAR measured elevation from LVIS
measured ground elevation. The height index was compared to
average RH100 and RH50 measured by LVIS lidar over the Carbono,
band multiple polarized backscatter and InSAR height index.

a2 a3 a4

45.71±6.05 2.08±2.53 –

21.67±6.25 −8.13±2.79 0.36±0.02
235.41±22.80 119.41±8.73 –

155.12±25.78 90.61±9.61 0.19±0.028

63.76±11.28 39.26±3.93 –

56.87±11.45 17.11±4.26 0.26±0.032
313.29±30.79 81.22±11.07 –

176.39±45.76 76.82±18.18 0.05±0.04

106.63±21.96 48.11±6.72 –

4.95±2.37 5.98±5.67 0.57±0.03
323.02±64.41 71.51±18.74 –

184.1±35.39 14.45±8.06 0.083±0.05



Fig. 8. Distribution of plot-by-plot estimation error (predicted−ground estimated) from L-band polarimetric algorithm using three polarizations of HH, HV, and VV, and at three
spatial scales: (a) 0.25 ha, (b) 0.5 ha, and (c) 1.0 ha.

Fig. 7. Predicted vs. ground estimated aboveground biomass from L-band radar backscatter measurements with three polarizations of HH, HV, and VV and at three spatial scales:
(a) 0.25 ha, (b) 0.5 ha, and (c) 1.0 ha.
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ECOS, and transect plots (Fig. 11). The height index had a significant
correlation with both RH100 (R2=0.55, pb0.001) and RH50
(R2=0.62, pb0.001) averaged over all 20 m pixels within the plots.
The average height metrics from LVIS and height index estimated over
the transect plots contributed significantly to the dispersion of data
points in Fig. 10c. The dispersion was mainly due to mixed pixel
information caused by the narrow width and slanted shape of
Fig. 9. Predicted vs. ground estimated aboveground biomass from P-band radar backscatter
(a) 0.25 ha, (b) 0.5 ha, and (c) 1.0 ha.
transects, introducing heights from neighboring pixels in average
height estimation. The better correlation of the height index with
RH50was probably due to the impact of the forest structure (e.g. basal
area, gap distribution, and canopy structure) on both metrics. Ideally,
the relationships in Fig. 11c can be used to calibrate the height index
to either RH100 or RH50. The RH100 values derived from InSAR and
measured by LVIS are shown for comparison in Fig. 11a and b. Both
measurements with three polarizations of HH, HV, and VV and at three spatial scales:
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Fig. 10. Distribution of plot-by-plot estimation error (predicted−ground estimated) from P-band polarimetric algorithm using three polarizations of HH, HV, and VV, and at three
spatial scales: (a) 0.25 ha, (b) 0.5 ha, and (c) 1.0 ha.
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images show similar patterns of vegetation height over La Selva with
the short secondary forests and plantations on the western side and
the mature and tall forests on the eastern side of La Selva. The images
also show that the InSAR-derived RH100 from the linear regression
model overestimates height in the upper end of the height range and
underestimates in the lower range. This suggests that the relationship
between the InSAR estimated hsc and RH100 might be non-linear and
require further study to improve.

4.6. Biomass estimation from backscatter and InSAR height index

Eq. (4) was used to combine the height index with all polarized
backscatter powers to estimate AGB. We performed the analysis at all
three scales and for L-band (Fig. 12) and P-band (Fig. 13) with all
polarizations. The contribution of the height index varied based on the
scale of the analysis. At L-band, the addition of height improved RMSE
by 18% at 0.25 ha, 22% at 0.5 ha, and 39% at 1.0 ha (Fig. 12). The
changes of RMSE were primarily from improvements of estimation
errors for AGBb200 Mg ha−1. Higher biomass values improved
slightly but remained underestimated at all scales.

The contribution of the height index to P-band backscatter
estimation of biomass was as significant as in the L-band (Fig. 13).
The RMSE improved by 7% at 0.25 ha, 24% at 0.5 ha, and 19% at 1.0 ha.
Fig. 11. Estimation of height index from InSAR measurements at C-band VV polarization: (a)
(b) lidar derived vegetation maximum height RH100, (c) comparison of InSAR height inde
(RH50).
However, the improvements were over the entire range, particularly
for AGBN200 Mg ha−1. In general, the addition of the height index
had two significant effects on the biomass estimation from radar
measurements: 1) It reduced the RMSE errors to approximately±10%
of the mean biomass at P-band and ±15% at L-band; and 2). It
enhanced the range of the biomass estimation to slightly over
200 Mg ha−1 at L-band and over 300 Mg ha−1 at P-band. Using the
height index alone to estimate AGB produced RMSE values similar to
multi-polarized backscatter regression at L-band, but with better
accuracies at higher biomass values (not shown here). The results
suggested that the combination of backscatter power and the height
index in estimation techniques would improve the biomass accuracy
across the biomass range and the spatial scales. The coefficients in the
estimation algorithm defined by Eqs. (2) and (3) for multiple
polarization and height index are summarized in Table 3.

5. Discussion

We demonstrated that both L-band and P-band data are sensitive
to the AGB of tropical forests and can be used to provide accurate
estimates of biomass within a limited range. The extent of this range
depends on the wavelength of the radar measurement, incidence
angle, and the density of forest canopy that together control the radar
InSAR derived height index (InSAR surface elevation−lidar derived ground elevation),
x with lidar derived maximum height (RH100) and the height at the 50% energy level
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Fig. 12. Predicted vs. ground estimated aboveground biomass from L-band radar backscatter measurements at HH, HV, and VV polarizations and the InSAR derived height index at
three spatial scales: a) 0.25 ha, (b) 0.5 ha, and (c) 1.0 ha.
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signal penetration into the canopy and hence the magnitude of
scattering from stems and branches. The accuracy of the estimation,
however, depends on the spatial variability of forest structure and
hence the spatial scale of the measurement, and other environmental
variables such as moisture condition and phenology. In this study, we
concentrated on the spatial variability of the forest structure and how
it impacts the radar estimation of AGB.
5.1. Spatial scales

The analysis of spatial variability of forest structure and the
biomass estimation from radar imagery would have been difficult to
perform without access to a large number of forest inventory plots at
different sizes. One of the key results of our research was the large
variability of forest structure and biomass at small spatial scales.
Semivariogram analysis of AGB showed almost no autocorrelation at
lag distances above 11 m. Other studies in La Selva old growth and
secondary forests and a neighboring patch of forest in Panama (BCI)
showed similar spatial variability in biomass, basal area, and canopy
light characteristics (Chave et al., 2005; Clark et al., 1996; Montgom-
ery & Chazdon, 2001). However, this large spatial variability reduced
considerably when the plot size increased to 0.25 ha (50 m×50 m)
and to approximately 10% at 1.0 ha plot size. The overall trend in the
loss of spatial variability by increasing the plot size was observed in
basal area in an earlier study in La Selva (Clark & Clark, 2000). The
Fig. 13. Predicted vs. ground estimated aboveground biomass from P-band radar backscatte
three spatial scales: a) 0.25 ha, (b) 0.5 ha, and (c) 1.0 ha.
same study showed that the basal area was more variable on steep
ultisol slopes than old alluvial terraces and ultisol ridgetops.

Together, these studies suggest that the small-scale variability of
forest structure and biomass at pixel sizes of 10–20 m is very large. At
these scales the biomass is influenced by forest disturbance and the
gap dynamics that may change rapidly due to wind, tree fall, and
mortality. However, at spatial resolutions greater than 0.25 ha
(50 m×50 m), forest structure and biomass start to be more stable
through time and less impacted by small scale disturbance. Patterns of
forest biomass over the landscape can be detected at scales larger than
0.25 ha, when the AGB follows a normal distribution (Fig. 3). In forests
of La Selva, the distribution of AGB does not deviate strongly from
normality or stationarity (mean and variance do not vary significantly
in space) at 1.0 ha scale, suggesting that this is a suitable scale for
estimating aboveground biomass. At smaller spatial resolutions, when
the AGB distribution is irregular and varies significantly from
normality and stationarity, estimation of AGB is subject to variable
errors over the landscape.

5.2. Mapping biomass

We developed algorithms at three spatial scales of 0.25 ha, 0.5 ha,
and 1.0 ha from radar backscattermeasurements and the height index
and applied the algorithms to the radar images at corresponding
spatial resolutions of 50 m, 71 m, and 100 m. Our main objective in
this analysis was to assess the performance of radar estimation of AGB
r measurements at HH, HV, and VV polarizations and the InSAR derived height index at
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Fig. 14. Distribution of aboveground biomass derived from P-band radar backscatter
algorithm based on HH, HV, and VV polarized backscatter measurements at 1.0 ha
resolution.
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by aggregating the spatial resolutions. We started our analysis at 50 m
resolution because this was approximately the minimum spatial
resolution where the forest structure at the pixel scale shows an
approximate normal and stationary distribution over the landscape.
By further increasing the pixel size, we reduce the speckle noise in
radar backscatter measurements, which in turn, can help to reduce
the estimation error. In addition, there is often a large geolocation
error of approximately 10–50 m that combines the GPS (Ground
Positioning System) errors associated with the location of the plots,
and orthorectification errors of radar imagery. Choosing larger pixel
size also reduced the errors associated with the orientation of plots
with respect to the radar geometry that often causes pixels around the
edge of the plots be partially covered by trees outside the plot.

The overall correlation between radar backscatter and AGB
depended on the scale of observation. Both L-band and P-band
polarized backscatter had better correlation with biomass measure-
ments at 1.0 ha plots. The estimation of AGB from scale-dependent
algorithms also showed an improvement in the error (RMSE) as the
scale increased from 0.25 ha to 1.0 ha. In order to check the
significance of the reduction of RMSE, we calculated the 95%
confidence interval at all scales and for both L-band and P-band
results. The confidence intervals (CI) were calculated using
CI = MF SEffiffi

n
p , where M is the mean value of AGB (169.7 Mg ha−1), SE

is the standard error, and n the number of samples. In general, for the
same SE, the larger the number of samples, the smaller is the width of
the confidence interval. The adjusted confidence intervals are
considered an alternative to estimate the significance of accuracy
improvements from the scale analysis.

At L-band, the width of the confidence interval after adjustments
for the number of points was 6.25 at 1.0 ha (28 points), 6.1 at 0.5 ha
(49 points), and 6.43 (92 points) at 0.25 ha. At P-band the adjusted
width of the intervals were 3.7 at 1.0 ha, 3.8 at 0.5 ha, and 3.9 at
0.25 ha. These results show that as the scale of the analysis changes
from 0.25 ha to 1.0 ha, the accuracy of the radar estimation improves
over the same confidence intervals. Given the approximately normal
distribution and stationary behavior of the forest biomass over the
landscape when sampled at the 1.0 ha scale, and the improved
accuracy of the radar estimation at the same scale, the results suggest
that the best resolution to map the aboveground biomass of tropical
forests from the radar imagery is about 100 m or greater. The spatial
resolution of the biomass map also depends strongly on the radar
design and its azimuth and range resolutions. In the case, of AIRSAR,
operating at 40 MHz, 100 m resolution is obtained by more than 500
looks.

The results also suggested that the algorithm developed at one
scale must be applied at radar images with equivalent pixel
resolution. Applying algorithms developed at one scale to images at
different resolution introduces errors in biomass estimation. To
produce biomass maps at resolutions larger than 100 m (1.0 ha), we
recommend using the 1.0 ha scale algorithm to 100 m resolution
images and then aggregating the biomass pixels to produce maps at
larger pixels. Fig. 14 provides a biomass map produced at 100 m
resolution using the P-band polarimetric backscatter algorithm.

5.3. Implications for global forest carbon assessment

Currently, two synthetic aperture radar missions to study the
forest structure and biomass are being studied by NASA and ESA.
NASA's mission, DESDynl (Deformation, Ecosystem Structure and
Dynamic of Ice) is an L-band SAR operating in polarimetric and
repeat-pass interferometric modes and is combined with a multi-
beam lidar sensor for measuring forest height (http://desdyni.jpl.
nasa.gov/mission/). The BIOMASS mission is a P-band polarimetric
SAR with the capability of repeat-pass Interferometry (http://www.
esa.int/). Together these missions are capable of providing spatially
resolved and accurate estimate of vegetation height and biomass. The
performance of radar sensors in capturing the spatial variability of
forest structure is a key element to unambiguously estimate the
biomass or to be used in a fusion approach to extrapolate the lidar
estimation of the biomass over the landscape. In this study, we have
shown that the radar imagery is sensitive to forest biomass, is capable
of capturing the spatial variability, and can provide estimates of
aboveground biomass. However, because of the spatial variability of
forest structure, the performance of the radar backscatter and height
measurements are strongly dependent on the scale of observation.
Over the tropical forests, where spatial variability is large, 1.0 ha
(100 m×100 m) appears to be an ideal scale for mapping the
aboveground biomass. At this scale, the radar resolution of 100 m is
achieved after averaging a large number of pixels (SARmulti-looking)
that allows a significant reduction of speckle noise. This process also
reduces orthorectification errors involved in locating the 100 m radar
pixel on the ground. As expected, radar sensors at P-band perform
better than L-band in estimating the aboveground biomass over a
larger range. The overall biomass range (the so-called saturation
referred to in radar literature) for each frequency depends on the
sensitivity of radar, the calibration of the radarmeasurements, and the
accuracy of the estimation. In this study, we have shown that at L-
band, using all polarized backscatter measurements, the range can
reach somewhere between 150 and 200 Mg ha−1. However, estima-
tion error can be large enough that only one (AGBN100 Mg ha−1) or
two (AGBN100 and AGBN150 Mg ha−1) levels of biomass can be
estimated unambiguously. At P-band however, the sensitivity
extended to biomass values of 300 Mg ha−1 at 1.0 ha scale. The P-
band estimation of AGB was accurate to approximately 15 Mg ha−1

averaged over the entire range of biomass at La Selva. The results
indicate that at both frequencies, additional information such as the
forest height obtained from radar Interferometry or lidar measure-
ments can improve both the range of biomass estimation and the
overall accuracy. It is expected that future fusion approaches
integrating measurements from radar and lidar sensors can provide
global forest biomass at spatial resolutions of approximately 1.0 ha or
larger.

6. Conclusions and recommendations

Despite numerous studies to estimate forest biomass from radar
imagery, there are very few examples in the literature that address the
impact of forest structural variability and radar measurement
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geometry on aboveground biomass estimation. The paucity of forest
inventory data at various plot sizes that can adequately sample the
landscape and provide detailed structural information has impeded
the necessary spatial analyses. Using forest inventory plots over a
range of biomass values from early succession to old growth tropical
forests in La Selva, Costa Rica, allowed us to examine the spatial
variability of forest structure and quantify its impact on the L-band
and P-band radar estimation of AGB. We showed that at both
frequencies, the best results are obtained at spatial scales where the
distribution of AGB over the landscape is both stationary and normal
and the radar resolution is large enough to reduce the speckle noise
and the geolocation error between radar pixel and the plot location.
Although, the spatial variability of forest biomass approaches the
normality and stationarity at scales greater than 0.25 ha (50 m×
50 m), the radar estimation of biomass can be significantly improved
at 1.0 ha scale (100 m×100 m pixel size). Only when the spatial
resolution is about 100 m, can errors associated with the biomass
estimation from radar backscatter or height measurements be
reduced to acceptable levels (10–20%) for mapping the aboveground
biomass globally.

The loss of sensitivity of radar backscatter to aboveground biomass
and hence the accuracy of the estimation also depends on the spatial
scale. In this study, the combined L-band polarized backscatter
estimated biomass up to 100 Mg ha−1 with about 15% accuracy at
1.0 ha scale.We foundhigher values of biomass could be estimatedwith
larger errors or by adding forest height index up to 200 Mg ha−1. At
P-band, the combined polarized backscatter estimated biomass with
approximately 10% accuracy up to 300 Mg ha−1 at 1.0 ha scale. Adding
forest height index improved the biomass estimation over the entire
range and reduced the errors associated with high biomass values.

Future spaceborne radar measurements at L-band and P-band
measurements by DESDynl and BIOMASS are accompanied with
accurate estimates of forest height and vertical profiles from lidar
measurements. Fusion approaches that can integrate measurements
from both radar and lidar sensors are necessary to successfully map
vegetation three-dimensional structure and biomass globally. The
development of these approaches depends on several factors: 1. A
theoretical understanding of the nature of radar and lidar measure-
ments of forest structure. 2. The relationship between forest structure
and biomass for different forest types. 3. Spatial variability of forest
structure and the required sampling frequency and spatial scale in
mapping the biomass. 4. Development of methodologies that can fuse
spatially contiguous measurements from radar imagery with sparse
sampling of lidar from space.
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