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Abstract. We develop a novel statistical approach for classifying generalists and
specialists in two distinct habitats. Using a multinomial model based on estimated species
relative abundance in two habitats, our method minimizes bias due to differences in sampling
intensities between two habitat types as well as bias due to insufficient sampling within each
habitat. The method permits a robust statistical classification of habitat specialists and
generalists, without excluding rare species a priori. Based on a user-defined specialization
threshold, the model classifies species into one of four groups: (1) generalist; (2) habitat A
specialist; (3) habitat B specialist; and (4) too rare to classify with confidence. We illustrate our
multinomial classification method using two contrasting data sets: (1) bird abundance in
woodland and heath habitats in southeastern Australia and (2) tree abundance in second-
growth (SG) and old-growth (OG) rain forests in the Caribbean lowlands of northeastern
Costa Rica. We evaluate the multinomial model in detail for the tree data set. Our results for
birds were highly concordant with a previous nonstatistical classification, but our method
classified a higher fraction (57.7%) of bird species with statistical confidence. Based on a
conservative specialization threshold and adjustment for multiple comparisons, 64.4% of tree
species in the full sample were too rare to classify with confidence. Among the species
classified, OG specialists constituted the largest class (40.6%), followed by generalist tree
species (36.7%) and SG specialists (22.7%). The multinomial model was more sensitive than
indicator value analysis or abundance-based phi coefficient indices in detecting habitat
specialists and also detects generalists statistically. Classification of specialists and generalists
based on rarefied subsamples was highly consistent with classification based on the full sample,
even for sampling percentages as low as 20%. Major advantages of the new method are (1) its
ability to distinguish habitat generalists (species with no significant habitat affinity) from
species that are simply too rare to classify and (2) applicability to a single representative
sample or a single pooled set of representative samples from each of two habitat types. The
method as currently developed can be applied to no more than two habitats at a time.

Key words: diagnostic species; fidelity measures; habitat preference; habitat specificity; indicator
species; indicator value; multinomial model; species classification; species distribution; succession.

INTRODUCTION

The habitat specificity of species has long been a major

focus of ecological research (MacArthur and Levins 1964,

Ashton 1967, Levins 1968, Rosenzweig 1981). Ecologists

often classify species as generalists or specialists, based on

the strength of species’ affinities for particular habitats.

These affinities can be determined by field observations

(Clark et al. 1999, Baker et al. 2002, Phillips et al. 2003) or

by experimentation (Abramsky et al. 1990, Fine et al.

2004, Baltzer et al. 2005), but should be validated based

on species abundance data derived from samples collected

in different habitats. Aside from its central importance in

testing and developing ecological theory, information

regarding habitat specificity has many practical applica-

tions, including identifying species of concern for conser-

vation, selecting species for restoration or reforestation

projects, and identifying unique suites of traits that link

species to particular habitat types (Mayfield et al. 2009).
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Many statistical approaches have been used to

examine species–habitat relationships, including fre-

quency distributions of presence records, indicator value

(IV) analysis, incidence- and abundance-based phi

coefficient of association, ordination, Mantel correla-

tions, multiple regression of distance matrices, and

occupancy analysis (Dufrêne and Legendre 1997, Sven-

ning 1999, Harms et al. 2001, Chytrý et al. 2002, Phillips

et al. 2003, Tuomisto et al. 2003, Tichý and Chytrý 2006,

De Cáceres and Legendre 2009). Although ordination

techniques are commonly used to classify species–site

relationships as a community-based approach, ordina-

tion does not permit a statistical classification of

individual species as habitat generalists or specialists

and usually demands that rare species be eliminated

from data sets prior to analysis (Clarke and Warwick

2001). The SIMPER analysis, implemented in PRIMER

(Clarke and Warwick 2001) quantifies the contribution

of individual species to similarity between two assem-

blages based on the Bray-Curtis similarity between the

samples, but this measure requires equal sampling

fractions in both habitats and is inappropriate for many

field data sets (Chao et al. 2006). Several studies have

demonstrated species associations with particular hab-

itats or topographic classes using null models that

predict abundances based on random distributions

across habitat types, while accounting for effects of

spatial autocorrelation (Harms et al. 2001, Plotkin et al.

2002, Comita et al. 2007, Itoh et al. 2010). But these

methods only allow common species to be tested for

significant departure from null expectations. Moreover,

existing methods that measure the strength of species

associations with particular habitats or assemblages do

not distinguish habitat generalists from species that are

simply too rare or infrequent to assess.

Here we report on a novel statistical approach to

classifying habitat generalists and specialists using a

multinomial model based on the estimated relative

abundance of species in two distinguishable habitats.

Our model permits a robust statistical evaluation of

habitat specialization for large numbers of species and

does not rely on measurements of individual perfor-

mance or exclude rare species a priori. As the foundation

for this new approach, our objective was to develop a

two-habitat species classification model that minimizes

bias due to difference in sampling intensities between the

two habitats as well as bias due to insufficient sampling

of rare species in each habitat. These problems

frequently arise in biodiversity surveys and inventories,

particularly in the species-rich tropics where most

species in assemblages are rare and species richness is

often incompletely sampled (Colwell and Coddington

1994, Longino and Colwell 1997, Chao et al. 2005,

Coddington et al. 2009). The two-habitat approach is

well suited to comparative studies in which a larger

number of habitat groups within particular study areas

can be pooled into two major categories that are shared

across all areas (e.g., high elevation/low elevation,

aquatic/terrestrial, canopy/understory, protected area/

matrix, sandy soil/clay soil, forest/savanna, etc.). It is

best suited for large habitat samples or for pooled

replicate plots within each of two habitat types.

For species shared between two habitat types, our

multinomial model distinguishes four groups: (1) habitat

A specialists, (2) habitat B specialists, (3) generalists,

and (4) species that are too rare to classify as either

specialists or generalists. These categories would apply

equally well to any comparison of the distribution of

species between two ecologically meaningful categories,

including not only habitat types, but also such contrasts

as the prey species in the diets of two predators, the

‘‘catch’’ of two insect trap types, or the species that

characterize two fossil-bearing strata. The method also

has potential in evolutionary biology to assess contrasts

between populations or species on the basis of alleles or

other markers that either characterize one group or the

other (‘‘specialist’’ alleles) or that are confidently shared

by both (‘‘generalist’’ alleles).

We illustrate our method with two contrasting data

sets. First, we classify 78 species of birds surveyed in

adjacent woodland and heath habitats in southeastern

Australia, based on data (Ecological Archives E083-058-

A1) from a previously published regional study of the

heath/woodland ecotone (Baker et al. 2002). The

original study used quantitative but nonstatistical

criteria to classify the habitat specialization of these

birds based on species abundance, using a method that

assumes equal sampling success in the two habitats.

Second, we demonstrate our approach and evaluate it

in depth using a data set for tropical rain forest trees in

northeastern Costa Rica. For such a highly diverse

group in which rare species predominate, limited data

from a single study area may be insufficient to evaluate

variation in species abundance across habitat types. To

test our method for this data set, we therefore used a

replicated, landscape-scale approach to obtain suffi-

ciently large samples, combining data from several

studies conducted concurrently in the region. We used

data on the abundance of trees �10 cm diameter,

sampled in each of two forest types: 11.3 ha of tropical

second-growth forests (SG) of various ages and land use

history (7–45 yr old) and 18.3 ha of old-growth forests

(OG), with no recorded history of recent major human

disturbance. Second-growth forests in this region have

regenerated following land clearance and burning for

agriculture during the past 50 years (Letcher and

Chazdon 2009). Because our statistical method com-

pares a single, large sample (or a set of pooled samples),

combining data from multiple study plots intentionally

minimizes effects of within-habitat spatial heterogeneity

on analysis of species habitat affinities, a strategy also

applied in the Australian bird study (Baker et al. 2002).

To illustrate the advantages and limitations of the

multinomial model approach, we compare our classifi-

cation results for the tree data set with indicator value

(IV) analysis (Dufrêne and Legendre 1997) and with
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equalized and nonequalized, abundance-based phi coef-

ficients of association (De Cáceres and Legendre 2009).
A species indicator value is based on the product of

mean species relative abundance within replicated
samples of a habitat type and relative frequency of

occurrence within those replicated samples, whereas the
phi coefficient measures the degree of association
between species presence/absence (or abundance counts)

and a binary habitat type (De Cáceres and Legendre
2009). We also evaluate the sensitivity of the multino-

mial model classification to sample size, by comparing
species classification results for six rarefied subsamples

composing 20%, 40%, 60%, 80%, 90%, and 95% of the
trees in the full sample. Across these six sampling

proportions, we compare the consistency of species
classifications as well as the percentages of species in the

four classification groups.

METHODS

Study areas and data sets

Baker et al. (2002) surveyed bird abundance eight times
at three-month intervals in Budderoo National Park,

Booderee National Park, and Nadgee Nature Reserve
coastal regions of southeastern Australia. Surveys were

conducted in 11 sets of paired woodland and heath plots
(50 3 400 m), parallel to, but 100 m distant from the

sharp, linear ecotone between Eucalyptus-dominated
woodland and treeless heath/sedgeland. These distinct

heath–woodland edges divided relatively large, homoge-
neous areas of vegetation extending more than 200 m on

each side (Baker et al. 2002). Using abundance data (total
number of detections), Baker et al. (2002) classified 18

species as woodland specialists, three species as heath
specialists, and 10 species as habitat generalists; an

additional 55 species were sampled, but were eliminated
from analysis due to low number of detections. By their
classification criterion, a specialist was any species with

.75% of detections in one of the two habitat types. No
correction was made for unequal total detections, for all

species pooled, in the two habitats. Although Baker et al.
(2002) included data from ecotone (habitat transition)

plots in their classification, our demonstration analysis is
based only on the subset of their data from the pure

woodland and pure heath plots.
The study landscape in the Sarapiquı́ region of

northeastern Costa Rica covered an area of ;48 km2,
of which ;48% was forested in 2001 (Sesnie et al. 2008).

The landscape consists of old-growth and second-
growth fragments in a complex matrix of cattle pastures

and plantations of banana, palm heart, pineapple, and
tree plantations. Several reserves are located within the

study area, including La Selva Biological Station and
adjacent areas of Braulio Carrillo National Park, Selva

Verde Lodge, Tirimbina Research Center, Finca La
Martita, and Finca El Bejuco Reserve (see map in
Appendix A). Reserves comprise ;28% of the area, and

second-growth forests are common, mostly regenerating
on abandoned pastures (Guariguata et al. 1997,

Chazdon et al. 2007, Schedlbauer and Kavanagh 2008,

Letcher and Chazdon 2009).

We analyzed inventory data for trees �10 cm from 34

secondary forest sites (0.1�1 ha) scattered across the

landscape and 11 plots in four distinct blocks of old-

growth forest at elevations from 30 to 150 m above sea

level. Appendix A provides detailed information on the

inventory data sets. Our study areas are representative

of second-growth and old-growth forests and encompass

the range of edaphic and topographic variation observed

within the area. For the purpose of the multinomial

species classification evaluated here, all secondary forest

sites were combined into a single, pooled sample and all

old-growth sites were combined into a second pooled

sample, together encompassing 13 689 trees (Appendix

A: Table A1). These two ‘‘full samples’’ (as we will call

them) combine the features of intensive and extensive

sampling of vegetation, a robust assessment of regional

assemblage composition for the analysis of tree species

affinities in second- and old-growth forest. For compar-

ison with methods that require replicated sampling

(indicator value analysis and the abundance-based phi

coefficients of association) we used individual data sets

as replicates. Our complete data set and species list is

found in Appendix B.

Multinomial model formulation

For clarity, the model will be presented in terms of the

old-growth (OG) and second-growth (SG) forest habi-

tats studied in the Costa Rican tree data set, but the

model applies equally to the Australian bird data set or

any other two-habitat comparison for which appropri-

ate data are available. Suppose that there are S species in

the combined area OG and SG forests and these S

species are indexed by 1, 2, . . . , S. Denote the true

(unknown) relative abundances for the OG forest as ( p1,

p2, . . . , pS), where RS
i¼1 pi ¼ 1, and the true (unknown)

relative abundances for the SG forest as (p1, p2, . . . , pS),
where RS

i¼1 pi ¼ 1. In the sample data, let the number of

stems (individuals) of the ith species in the OG forest be

denoted by Xi and the corresponding number of stems of

this species in the SG forest be denoted by Yi. Thus our

data include two sets of absolute abundances: (X1, X2,

. . . , XS) for the OG forest and (Y1, Y2, . . . , YS) for the

SG forest. Assume the sample size in OG forest is n and

the sample size in SG forest is m, i.e., RS
i¼1 Xi ¼ n and

RS
i¼1 Yi¼m. Our statistical model is a multinomial model

for each of the two sets of absolute abundances (X1, X2,

. . . , XS) and (Y1, Y2, . . . , YS).

Observed values of relative abundance in most

studies, especially for diverse tropical biotas, are often

based on incomplete samples. Our model allows that

some species may be present in one or both forest

habitats, even if they were not detected in one or both

pooled samples. We assume that observed relative

abundance in the samples reflects the true relative

abundances (i.e., the data are representative of the

assemblage from which they were recorded) but is
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subject to random sampling error. Based on sample

data, we first obtain an adequate estimator for the true

relative species abundances pi and pi.

For species i, let ai ¼ Xi/n be the sample relative

abundance of this species in the OG forest and bi¼Yi/m

be the corresponding sample relative abundance in the

SG forest. A traditional approach is to use the sample

relative abundance as an estimate of true relative

abundance. However, the sample relative abundance

works correctly for individual species only if all species

present have been observed in the sample. This

approach implies that any undetected species has zero

relative abundance, which is not a reasonable conclusion

in highly diverse assemblages with many rare species.

The sample frequency underestimates the probability of

observing an individual of any undetected species, while

simultaneously overestimating the probabilities for the

observed species, such that, overall, the expectation of

the sample frequency is an unbiased estimator. Because

the level of overestimation for each detected species

scales inversely with abundance, however, estimates for

rare, detected species are more severely biased than

estimates for common, detected species (Appendix C).

A simple modification to correct for this bias for rare,

detected species is based on the concept of sample

coverage, attributed to Alan Turing by Good (1953,

2000). The sample coverage for a sample is defined as the

proportion of the true total abundances (including

undetected species) represented by the pooled abun-

dances of the species detected by the sample. A well-

known estimator (first proposed by Turing; see Good

1953) for the sample coverage is one minus the

proportion of singletons in the sample (Appendix C),

where a singleton is a species represented by exactly one

individual in the sample. Turing’s theory implies that a

proper estimate for pi is ~pi¼C1(Xi/n)¼C1ai, where C1¼
1� f1/n denotes the sample coverage for OG data and f1
denotes the number of singletons in the OG data.

Similarly, a proper estimate for pi is p̃i ¼ C2(Yi/m) ¼
C2bi, where C2 ¼ 1 � g1/m denotes the sample coverage

for SG data and g1 denotes the number of singletons in

the SG data (Ashbridge and Goudie 2000, Chao and

Shen 2003). Under this modification, the fraction of the

total abundances of the undetected species in OG data

and in SG data is, respectively, 1� C1 and 1 – C2, rather

than 0 as in the traditional approach.

For common species, the sample relative abundances

Xi/n and Yi/n based on observed frequencies accurately

reflect the true relative abundances, and statistical

adjustment is not needed (Appendix C). Thus, in practice,

we adopt a mixed approach, applying the sample

coverage correction to rare species (Xi or Yi , 10

individuals), while using sample relative abundances for

common species (Xi orYi� 10 individuals) (Appendix C).

Species classification algorithm

After we obtain the estimated relative abundances ~pi
and p̃i in each type of forest (Appendix D), we compute

the ratio ~pi/(~piþ p̃i ) for each species i as an estimate of

the unknown parametric ratio pi/( pi þ pi ) and compare

this estimate to a specialization threshold value. (We
could just as well compute its one-complement as an

estimate of pi/( pi þ pi ).) Observed species can be either

shared by OG and SG samples or unshared (present in
one sample but not the other). In our example, shared

species can be classified into four possible groups: OG

specialist, SG specialist, generalist, or too rare to

classify.

Classification of shared species

If a shared species is an OG specialist, then we would
expect that pi is sufficiently higher than pi, or equiva-

lently, the ratio pi/( piþpi ) is sufficiently higher than 1/2.

But how high is sufficiently high? We consider two
different specialization thresholds to bracket our anal-

ysis. A conservative threshold, based on the concept of

‘‘supermajority’’ rule, uses a cut-off point K ¼ 2/3, i.e.,

pi/( pi þ pi ) . 2/3 (equivalently, pi . 2pi ). Many
decision-making bodies use a two-thirds majority to

determine their actions, such as in the election of the

Roman Catholic Pope or in parliamentary procedures of
particular consequence. A liberal threshold uses a

‘‘simple majority’’ rule, with a cut-off point K ¼ 1/2,

i.e., pi/( pi þ pi ) . 1/2 (equivalently, pi . pi ).

Our procedure then performs one-sided statistical
tests to classify species at a specified significance level, P.

Both K and P are inputs to the multinomial model.

Suppose that ~pi . 2p̃i, suggesting that species i is an OG

specialist; we need to assess this classification statisti-
cally. Using the supermajority rule K¼ 2/3 to determine

whether a species i belongs to the category OG specialist,

we carry out a statistical test (test 1; see Appendix D) at
a specified significance level P to assess:

H0 : pi � 2pi vs: H1 : pi . 2pi: ð1Þ

The choice of P depends on the user’s objective. If the
goal is to classify particular focal species, P could be

0.05 (or some other specified level). In contrast, if the

objective is assemblage-wide classification, multiple

comparisons are required and thus a much smaller P
should be used, in order to yield a corresponding overall

(experiment-wise) P. If test 1 is significant, then the

species will be classified as an OG specialist. If the test is
not significant, then the species will be classified as a

generalist or as too rare to classify. Likewise, for a

species for which p̃i . 2~pi, to determine whether a

species i belongs to the category SG specialist, we test:

H0 : pi � 2pi vs: H1 : pi . 2pi: ð2Þ

If the test is significant, then the species will be

classified as an SG specialist. If test 2 is not significant,
then the species will be classified as a generalist or as too

rare to classify.

Based on the previous idea for classifying a species as

an OG or SG specialist, for any fixed value of Y (the raw
count of individuals of some particular species in SG) we
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can determine for given sample sizes the minimum value

of X (the raw count of individuals of the same species in

OG) such that the test H0: pi � 2pi vs. H1: pi . 2pi is
significant at a particular value of K and P, assuming

this species is indexed by i in the data list. For example,

for the full sample in the tree data set (Fig. 1), if Y¼ 1,

we require that X � 13 to assure that pi . 2pi is

significant so that (X, 1) is declared an OG specialist (at

P¼0.005 and K¼2/3). This special minimum value of X

for Y¼ 1 is called Xmin. For these data, Xmin¼ 13. If Y¼
2, we require that X � 18 to assure that pi . 2pi is
significant so that (X, 2) is classified as an OG specialist.

If Y¼ 3, we require that X � 22 to assure that pi . 2pi is
significant so that (X, 3) indicates an OG specialist.

Continuing this process, for any value of Y, we can

determine such a minimum value of X. Thus connecting

the points (13, 1), (18, 2), (22, 3), . . . , we have a

boundary line between generalists and OG specialists

(the dot-dashed line in Fig. 1).

In the same way, for any fixed value of X, we can

determine for the full sample the minimum value of Y

such that the test H0: pi � 2pi vs. H1: pi . 2pi is

significant. For example, for the full sample in the tree

data set, for X¼ 1, we require that Y � 11 to assure that

pi . 2pi is significant so that (1, Y ) is classified as an SG

specialist. This special minimum value Y for X ¼ 1 is

called Ymin. For these data, Ymin ¼ 11. For X ¼ 2, we

require that Y � 14 to assure that pi . 2pi is significant

(at P ¼ 0.005) so that (2, Y ) is declared to be an SG

specialist. For X ¼ 3, we require that Y � 17 to assure

that pi . 2pi is significant so that (3, Y ) belongs to an

SG specialist. The line connecting points (1, 11), (2, 14),

(3, 17) . . . represents the boundary between generalists

and SG specialists (the dashed line in Fig. 1).

The tests used for determining the two boundary lines

(Fig. 1) are the tests we need for our classification

scheme. Based on our experience, 10–20 points are

sufficient to plot each line. Thus a total of 20–40 tests

are used in our approach (even if there are hundreds of

species). Thus, for an overall (experiment-wise) P¼ 0.05,

the significance level for each individual test should be

controlled to be in the range of 0.05/20 ¼ 0.0025 and

0.05/40 ¼ 0.00125. For an overall P ¼ 0.10, the

individual level P should be controlled to be in the

range of 0.10/20 ¼ 0.005 to 0.10/40 ¼ 0.0025. We

recommend using P¼0.005 or 0.001 for experiment-wise

hypotheses.

Classifying unshared species

Unshared species (X¼ 0 and Y . 0, or Y¼ 0 and X .

0) can be classified as OG specialist, SG specialist, or too

rare to classify. In either case (X¼ 0 or Y¼ 0), we follow

the rules for Y¼1 and X¼1 to do the classification. This

approach can be statistically justified because, if the

frequency (X, 1) is significant for detecting pi . 2pi, then
the frequency (X, 0) must be at least as significant. That

is, the threshold on the X-axis for significantly OG

specialist species is Xmin. Any unshared OG species with

fewer than Xmin individuals is too rare to classify as OG

specialist (or for that matter, as a generalist), whereas an

unshared OG species with abundance X � Xmin is

declared an OG specialist, on the basis of these samples

(Fig. 1). Likewise, the threshold on the Y-axis for

significant SG specialist species is Ymin. Any unshared

SG species fewer than Ymin individuals is too rare to

classify as an SG specialist (or as a generalist), whereas

an unshared SG species with abundance Y � Ymin is

declared an SG specialist, on the basis of these samples.

Identifying shared species that are too rare to classify

Both unshared species and shared species (X . 0, Y .

0) can be too rare to classify with confidence. Species are

too rare to classify if X and Y are both relatively small or

if a linear combination of X and Y is relatively small. We

adopt the latter linear bound as a separation between

‘‘generalist’’ and ‘‘too rare.’’ To identify these species,

which lie near the origin of the (X, Y ) plane, we draw a

line segment connecting (Xmin, 0) to (Xmin, 1), another

connecting (0, Ymin) to (1, Ymin), and a third connecting

(Xmin, 1) to (1, Ymin) (the solid line in Fig. 1). This

separation line can be justified as the line farthest from

the origin such that all species with (X, Y ) values lying

between the origin and this boundary line are not

significant for both test 1 and for test 2; in contrast,

beyond this line, there exist (X, Y ) values that are

significant for test 1 or test 2. For the full samples in the

tree data set (Fig. 1), we have Xmin¼ 13 and Ymin¼ 11,

so the four points defining the boundary are (13, 0),

FIG. 1. Classification results for species in the full sample
for the rain forest tree data set, using the super-majority
specialization threshold (K ¼ 2/3, P ¼ 0.005), with adjustment
for multiple comparisons. Key to abbreviations: SG, second
growth; OG, old growth. Trees �10 cm diameter at breast
height were sampled in 11.3 ha of second-growth and 18.3 ha of
old-growth forests within a 48-km2 area of northeastern Costa
Rica.
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(13, 1), (0, 11), and (1, 11). In the (X, Y ) plane, this

boundary line includes three straight line segments.

However, in the (logX, logY ) plane in Fig. 1, the line

connecting (Xmin, 1) and (1, Ymin) becomes a curve.

Evaluating the multinomial classification

results for the tree data set

Using the procedures described above, we initially

classified each of the 359 species in the full samples into

one of the four classes: (1) successional generalists, (2)

SG specialists, (3) OG specialists, and (4) too rare to

classify (Fig. 1). We ran the multinomial model using K

¼ 2/3 and K ¼ 1/2 to bracket conservative and liberal

classification rules, setting P ¼ 0.05 and 0.005 to

demonstrate both the individual species and experi-

ment-wise approaches. The classification was based on

an iterative program (CLAM) that implements all

classification procedures (see Appendix G).

For the tree data set, we compared multinomial

classifications to four other approaches: (1) a nonstatis-

tical approach based on species frequency of occurrence

(presence/absence) in two forest types; (2) indicator

value (IV) analysis (Dufrêne and Legendre 1997) based

on species frequency of occurrence in replicated samples;

(3) nonequalized abundance-based phi coefficient index

(i.e., the point-biserial correlation coefficient rpb in De

Cáceres and Legendre 2009); and (4) group equalized

abundance-based phi coefficient index (i.e., the point-

biserial correlation coefficient rg
pb in De Cáceres and

Legendre 2009). Significance was based on randomiza-

tion tests. De Cáceres and Legendre (2009) considered

two types of data (presence/absence and abundance-

based) and two indices (phi coefficient index and

indicator index), yielding four approaches, for each of

which they also considered an ‘‘equalized’’ and a

‘‘nonequalized’’ version: a total of eight measures. We

wrote R codes to perform classifications and permuta-

tion tests for indicator value analysis for these eight

measures, based on a significance level of P ¼ 0.05 for

each species, using six sites for OG and eight sites for SG

(Letcher’s SG sites are pooled as a single site; Appendix

A). The results do not differ much among these eight

measures, so we present results for only two here: the

abundance-based, nonequalized and the group equalized

phi coefficient indices, which are the two measures

particularly highlighted by De Cáceres and Legendre

(2009). None of these other methods identifies general-

ists, so we could not compare this aspect of our

classification method.

To assess the sensitivity of the multinomial classifi-

cation model to sample size, we repeated the classifi-

cation analyses on each of six rarefied subsamples for

the forest data set, composed of 20%, 40%, 60%, 80%,

90%, and 95% of stems in the full samples in each forest

type. Random subsamples were drawn without replace-

ment from the full sample, performing 1000 runs for

each rarefaction level, maintaining the proportion of

stems in OG (0.567) and SG (0.433) found in the full

sample. We examined the consistency of the multino-

mial classification model across different sampling
fractions by quantifying the average percentage of

1000 trials in which the classification results remained
perfectly consistent with classification results based on

the full samples. We also compared the percentage of
species in each of the four classes for each rarefaction
level to the corresponding percentage within the full

samples. Because even the full samples contain a large
percentage of singletons (19.4% of species in OG and

30.7% of species in SG), all of which were expected to
fall into the ‘‘too rare to classify’’ category, we expected

that as the sampling fraction is reduced, the proportion
of species in this category would increase and the

proportions in the generalist and specialist categories
would decrease.

RESULTS

Bird species classification based on the multinomial model

A total of 2482 birds (69 species) were observed in

woodland plots and 1295 birds (40 species) were
observed in heath plots (Baker et al. 2002); 31 of 78

(39.7%) species were shared between the two habitat
types. We used a super-majority specialization thresh-

old (K ¼ 2/3) and evaluated classifications at P ¼ 0.05
(appropriate for classification of individual species) and

P ¼ 0.005 (suitable for assessing overall pattern).
Thirty-three species (42.3%) were too rare to classify

using P¼0.05, whereas 36 species (46.2%) were too rare
to classify using P ¼ 0.005, a difference of only three

species (Appendix E). Among the 47 bird species that
Baker et al. (2002) excluded due to a low number of

detections, our method classified six as woodland
specialists, five as heath specialists, and three as

generalists (P ¼ 0.05; Appendix E), even though we
used a subset of their data that excluded samples within
the ecotone itself. Using P¼ 0.005, five of the excluded

species were classified as woodland specialists and four
as heath specialists, a difference of only one species in

each category.
Our results were highly concordant with the nonsta-

tistical classification by Baker et al. (2002). The three
heath specialists identified by Baker et al. (2002) were

consistently classified as heath specialists using both P
levels (Appendix E). Among the 18 woodland specialists

identified by Baker et al. (2002), we classified 15 as
woodland specialists and three as generalists (P¼ 0.05).

Among the 10 habitat generalists, seven were classified
as generalists and three as heath specialists (P¼0.05 and

P ¼ 0.005; Appendix E). Compared to the 21 habitat
specialists identified by Baker et al. (2002), our model

classified 32 and 28 as specialists for P¼ 0.05 and 0.005,
respectively. Most of these additional specialists

emerged from the pool of species excluded by Baker et
al. (2002) as too rare to classify (Appendix E).

The percentage of species with only one or two
individuals (singletons and doubletons) was 21.7 for

woodland data and 25.0 for the heath data. For the
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estimation of relative abundance, 44.9% of the species in

woodland data and 50.0% in heath data had fewer than
10 individuals and thus required the application of the

Turing-Good estimator.

Tree species classifications based

on the multinomial model

The pooled data set for trees contained a total of 359
species; 299 species were observed in OG, whereas 238

species were observed in SG. Half of the species (49.6%)

were shared by both forest types. Over one-third of the
species were found only in OG (33.7%), whereas 16.7%
of species were found only in SG. The percentage of

species with only one or two individuals (singletons and

doubletons) recorded in the full samples was higher for
SG (47.1%) than for OG (27.1%). For the estimation of

relative abundance, 71.8% of the species in SG and

61.5% in OG had fewer than 10 individuals and thus
required the application of the Turing-Good estimator.

The species classification for K ¼ 2/3 (super-majority

threshold) and P ¼ 0.005 (adjusted for experiment-wise

tests) revealed that 231 species (64.4%) were too rare to
classify. Among the 128 species sufficiently abundant to

classify, OG specialists were the largest class (52 species,

40.6%), followed by successional generalists (47 species,
36.7%) and SG specialists (29 species, 22.7%; Fig. 2).

Setting, instead, a simple-majority threshold (K¼ 1/2)

reduced the number of species too rare to classify from

231 to 205 (from 64.4% to 57.1%). Among the 154
species sufficiently abundant to classify, OG specialists

were again the largest class (78 species, 50.6%), followed

by generalists (38 species, 24.7%) and SG specialists (38
species, 24.7%; Fig. 2). Using the simple-majority

threshold, abundant shared species tend to be classified

as specialists, whereas these species are more likely to be

classified as generalists using the higher threshold
(Appendix F). Comparing the results for these alterna-

tive thresholds demonstrates a clear trade-off between

increased sensitivity of the model to specialists and

classification of a higher fraction of the total species

present in samples.

Indicator species and phi coefficient

of association analyses

To compare our multinomial model with the IV

analysis and phi coefficient methods on the same

footing, we set P¼ 0.05 for all methods, because nearly
all IV and phi coefficient tests would be nonsignificant

for our data for P ¼ 0.005 (Appendix F). The

multinomial method was more sensitive in classifying

species as OG or SG than either IV or abundance-based
phi coefficient analyses (Fig. 3). Of the 72 OG specialists

classified by the multinomial method (K¼ 2/3), only 40

were significant by IV, 42 by nonequalized phi, and 41
by equalized phi. Likewise, of the 38 SG specialists

classified by the multinomial method (K ¼ 2/3), only

seven were significant by IV and 10 by either of the phi-
coefficient analyses.

Based on the IV analysis, 45 tree species were

significant OG indicator species and seven were signif-

icant SG indicators (Appendix F). Among the 45 OG
indicator species, our multinomial method classified 40

as OG specialists, two as generalists, and three as too

rare to classify based on the conservative threshold (K¼
2/3; Appendix F). All seven of the SG indicator species
were classified as SG specialists by the multinomial

method. The nonequalized and equalized abundance-

based phi coefficient of association both pinpointed the
same 10 SG indicator species. All of these species were

classified as SG specialists using either specialization

threshold (K ) of the multinomial method (Appendix F).
A total of 59 species were identified as OG indicator

species based on equalized or nonequalized abundance-

based phi correlations; 46 of these were OG indicator

species in both phi-coefficient analyses (Appendix F). Of
these 46 species, 40 were classified as OG specialists

using the conservative threshold of the multinomial

method (K ¼ 2/3) and all 46 were classified as OG

FIG. 2. Classification results for alternative specialization thresholds for 359 tree species in the full sample, based on the
percentage of species that could be significantly classified (P ¼ 0.005). Results are shown as black bars using the super-majority
threshold (K¼ 2/3) and as white bars using the simple-majority threshold (K ¼ 1/2).
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specialists using the liberal threshold (K¼ 1/2; Appendix

F).

Consistency of species classification

in rarefied sampling fractions

Random sampling of fractional subsets from the full

samples had little effect on species classifications for

habitat specialists. For OG and SG specialists, the

classification results for the rarefied subsamples were

consistent with those based on the full sample, even for

sampling fractions as small as 20% (Fig. 4). In the 20%
rarefied sample (1554 stems from OG and 1184 stems

from SG), on average, 98.7% of the species classified as

SG specialists in the rarefied samples remained classified

as SG specialists in the full samples and an average of

96.9% of the species classified as OG specialists in the

rarefied samples remained classified as OG specialists in

the full samples (Fig. 4). For species classified as

generalists in the rarefied subsamples, the results are

slightly less robust than for specialists, but species

classifications remain highly consistent, especially for

rarefied fractions of 40% or higher (Fig. 4). In the 20%
rarefied fraction, 83.2% of the species classified as

generalists in the rarefied samples maintained their

classification as generalists (Fig. 4).

Distribution of classification groups

in rarefied sample fractions

Not surprisingly, a higher fraction of total species can

be confidently classified as generalists or specialists in

larger samples. As expected, the percentage of species

too rare to classify increased as the equal-sampling

fraction declined from 95% to 20%, while the percentage

of species classified as generalists and specialists

decreased (Fig. 5). At 20% of the full sample size, an

average of 82.4% of species were too rare to classify,

compared with only 64.4% in the full samples. The OG

specialists formed the next largest class of species in all

simulations, except in 20% and 40% rarified samples,

where generalists surpassed the OG specialists. The OG

specialists declined from 14.5% in full samples to only

4.6% in the 20% rarified samples (Fig. 5). The

percentage of SG specialist declined from 8.1% in the

full samples to only 5.4% in the 20% rarified samples.

Equalizing the total abundance of stems sampled in OG

and SG had no effect on the classification of specialists

FIG. 3. Species classifications of 359 Costa Rican tree species based on the multinomial method using conservative (K¼ 2/3)
and liberal (K ¼ 1/2) specialization thresholds, indicator value (IV) analysis, nonequalized abundance-based phi coefficient, and
equalized abundance-based phi coefficient. P¼ 0.05 for all methods.

FIG. 4. The mean percentage (out of 1000 trials) of tree
species that maintained the same classification of specialists and
generalists as in the full sample, for six discrete levels of
rarefaction. Rarefied subsamples maintained the same propor-
tion of total tree species abundances in old growth (OG) and
second growth (SG) in northeastern Costa Rica. Key to
symbols: crosses, generalists; circles, OG specialists; and
triangles, SG specialists.
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and generalists in the full sample or in any of the rarefied

sample fractions (data not shown).

DISCUSSION

As illustrated by two quite different data sets, our

multinomial method permits the statistically robust

classification of a substantial proportion of species,

based on inventory data for entire assemblages collected

in representative plots in two distinct habitats. This new

approach has several advantages over the application of

existing methods for the binary classification of habitat

specificity. Applying our method to the bird data of

Baker et al. (2002) increased the number of species

classified as habitat specialists compared with the

quantitative but nonstatistical methods used in the

published study (Appendix E). Further, the original

nonstatistical classifications were strongly concordant

with the multinomial model classifications for species

categorized by both approaches (Baker et al. 2002). For

the tree data set, the multinomial model detected more

habitat specialists than either indicator value analysis or

abundance-based phi correlation analyses (Fig. 3,

Appendix F).

These examples demonstrate four additional advan-

tages of the multinomial classification method using

combined samples from habitat types within a region.

First, species that are generalists can be classified and

distinguished from species that are too rare to classify.

Second, by combining a representative set of samples,

the analysis avoids the complicating effects of within-

habitat heterogeneity (beta diversity) on species classi-

fications. If a species is missing or rare in one OG site

but abundant in others, it can still be classified as an OG

specialist. This pooling effect may well be why the

method classified more habitat specialists than either

indicator value or abundance-based phi correlation

methods. Thus, the method is less sensitive to the spatial

distribution of species across sites, which often may

reflect dispersal limitation or local historical effects,

rather than true habitat specificity. Third, all species are

analyzed, regardless of their abundance, and the model

itself identifies those species that are too rare to classify.

In our tree data set, all of the 101 tree species that were

found in only one of the replicate study areas (Appendix

A) were too rare to classify at P¼ 0.005 (Appendix A).

Thus, to our knowledge, our method did not inappro-

priately classify any local site specialists as habitat

specialists. Fourth, ours is the only statistically rigorous

method for the binary classification of the habitat

specificity that does not require replicated samples for

each habitat.

The model permits flexibility in applying liberal or

conservative specialization thresholds and significance

levels. Our analysis illustrates the expected trade-off

between ‘‘oversensitivity’’ of the model to specialists and

classifying a higher fraction of the total species present

in samples. Using the simple-majority threshold results

in classification of fewer generalists and more specialists.

This effect becomes more pronounced with small sample

size. To compensate for this effect, we suggest using a

super-majority rule (2/3 or perhaps an even stricter

criterion) when using small samples. Two different

classification rules can also be used to ‘‘bracket’’ species

classification results, or for a particular species, the

specialization threshold at which the species shifts from

being classified as a specialist to being a generalist could

be found as the threshold proportion for the test is

increased.

Our simulations using rarefied fractions of the full

samples confirmed that the classification of specialists

and generalists based on small sampling fractions is

highly consistent with classifications based on the full

samples for our data (Fig. 4). As expected, when smaller

and smaller random samples are drawn from the full

samples for OG and SG, an increasing number of species

become too rare to classify, and (for the tree data) this

effect is most pronounced for OG specialists and

generalists (Fig. 5). This effect of ‘‘undersampling’’ will

always be stronger when the full sample has few

dominant species and many relatively rare species, as

is clearly the case with tropical forest tree communities

(Ashton et al. 1990, Pitman et al. 1999).

Classification methods based on species abundance

data assume that abundance is a proxy measure for

species adaptedness or fitness within the particular

habitats examined. But species abundance can be limited

locally in a suitable habitat due to dispersal limitation

and therefore does not always reflect the suitability of a

particular habitat for a species. Although relatively less

important for the bird example, dispersal limitation is

particularly common for large-seeded, animal-dispersed

tree species in early successional habitats. Seedlings of

many of the trees species classified here as OG specialists

FIG. 5. The mean percentage of Costa Rican tree species
(out of 1000 trials) in each of four classification groups for six
discrete levels of rarefaction.
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are present in the understory of SG forests (Norden et

al. 2009, Chazdon et al. 2010). Thus, tree species

classification as OG specialists is attributed to the later

colonization in SG rather than to the inability of these

tree species to grow and survive in SG.

Our model does not explicitly account for spatial

autocorrelation, but rather relies on study design to

avoid the pitfalls of confounding habitat differences

with unmeasured spatial variables. We emphasize the

importance of sampling species abundance in well-

dispersed and representative study sites. Baker et al.

(2002) strategically placed replicate plots over a wide

area of southeast Australia. Tree data from SG and OG

sites were interspersed across a broad landscape

including a wide range of edaphic variation, thereby

reducing the potential effect of unmeasured environ-

mental variables, but the abundance of many tropical

tree species is known to be patchy, even at the landscape

scale (He et al. 1997, Clark et al. 1998, Condit et al.

2000, Plotkin et al. 2000). Spatial aggregation can lead

to the appearance of specialization to a particular forest

type or condition, but may arise from some other

underlying effect, such as dispersal limitation, recruit-

ment subsidies (Franklin and Rey 2007, Zuidema et al.

2010), or unique microhabitats. We would expect spatial

autocorrelation to be a more serious problem classifying

species within a restricted area (a 50-ha plot, for

example; Condit et al. 2000) than from widely scattered

sites across a landscape or region. We recommend

testing for spatial autocorrelation of species abundance

patterns across sampling plots prior to the application of

the multinomial classification method. If significant

spatial autocorrelation is found, species abundance data

should be replaced with frequency data (presence or

absence of species in spatially gridded subsamples),

thereby removing strong effects of spatial clumping on

the classification results.

Using our model as currently developed, specializa-

tion can be assessed for no more than two habitats.

Characterizing the scope of a continuum by means of a

dichotomy is a longstanding practice in ecology

(consider, for example, r- vs. K-selected species, ‘‘small’’

vs. ‘‘large’’ and ‘‘near’’ vs. ‘‘far’’ islands in the theory of

island biogeography, or temperate vs. tropical climates).

Indeed, binary classifications in science in general are

ubiquitous and often more useful than more complex

conceptualizations. In statistics, two-sample models and

tests are widely applied to contrasts of all kinds.

Nevertheless, unlike IV analysis, the current model

cannot be used to compare species’ relative abundance

patterns across a larger number of habitats. The model

could be used to compare species distributions across

more than two habitats by classifying species in different

combinations of habitat pairs, but this approach still

considers only two habitats within each classification

and interpretation could quickly become unmanageable.

We aim to develop an expanded model for more than

two habitats in the future. Finally, in our model, as with

any discrete classification model, biological variables are

usually continuous and gradients of species characteris-
tics and responses are not taken explicitly into account,

although they could be part of the design.
Ultimately, classification methods are limited by the

nature and extent of the underlying data. If sampling is
sparse and incomplete, all but a few highly abundant

species will be too rare to classify. As applied to
successional forests, classification results will also be
highly sensitive to the successional stage of forests

sampled, as the tree species in old-growth forests are
slow to colonize and recruit to 10-cm size classes in old

fields and young second-growth forests (Letcher and
Chazdon 2009, Chazdon et al. 2010).

Species rarity presents challenges for any model of
classification. About 40% of the bird species and more

than half of the tree species in the data sets we analyzed
here proved too rare to classify (Figs. 1 and 5;

Appendices E and F for details). For these species, it
is not possible to determine habitat affinities with

statistical confidence based on relative abundance data.
But rare species are often those of greatest conservation

concern (for example, the Eastern Bristlebird, Dasyornis
brachypterus, in the Baker et al. [2002] study), and most

tree species are rare in tropical forests. In upper
Amazonian forests, for example, 88% of tree species

occur at densities of less than 1 tree/ha (Pitman et al.
1999). Of the 231 species too rare to classify in the full

samples, 54 occurred only in SG forest, 101 occurred
only in OG forest, and 76 were shared. In these cases,
incidence data (as opposed to relative abundance) may

be the only criterion of habitat affinity, and determina-
tion of habitat specialization will require more detailed,

species-level information.

CONCLUSIONS

Classifying species into generalist and specialist

groups is the first step toward examining the underlying
biological and ecological factors leading to the differen-

tial distribution of species between habitats. Results of
classification models have broad significance for testing

ecological theory, for planning and communicating
conservation or reintroduction programs, and for

assessing effects of climate change and succession on
species distributions. We have demonstrated that our

multinomial model holds much promise for classifying
species habitat affinities at a landscape scale. The utility
and broad applicability of our new abundance-based

model should be tested with a wider variety of data and
taxa.
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APPENDIX A

Description of vegetation inventory data sets used in this study (Ecological Archives E092-112-A1).

APPENDIX B

Tree species�10 cm dbh and their abundance in old-growth and second-growth study areas described in Appendix A (Ecological
Archives E092-112-A2).

APPENDIX C

The effect of undetected species on estimated species frequencies (Ecological Archives E092-112-A3).

APPENDIX D

Testing for specialization under the multinomial model, using a super-majority threshold (Ecological Archives E092-112-A4).

APPENDIX E

Classifications of 78 bird species surveyed by Baker et al. (2002) in woodland and heath plots in southeastern Australia
(Ecological Archives E092-112-A5).

APPENDIX F

Comparison of results of Indicator Species Analysis, equalized and non-equalized abundance-based phi correlation analysis and
multinomial classification of 359 tree species using super-majority threshold and simple-majority threshold using P¼ 0.05 or P¼
0.005 (Ecological Archives E092-112-A6).

APPENDIX G

User’s Guide for Program CLAM, with instructions and a link for downloading the program (Ecological Archives E092-112-
A7).
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