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Abstract. Carbon estimates from terrestrial ecosystem models are limited by large
uncertainties in the current state of the land surface. Natural and anthropogenic disturbances
have important and lasting influences on ecosystem structure and fluxes that can be difficult
to detect or assess with conventional methods. In this study, we combined two recent
advances in remote sensing and ecosystem modeling to improve model carbon stock and
flux estimates at a tropical forest study site at La Selva, Costa Rica (108259 N, 848009 W).
Airborne lidar remote sensing was used to measure spatial heterogeneity in the vertical
structure of vegetation. The ecosystem demography model (ED) was used to estimate the
consequences of this heterogeneity for regional estimates of carbon stocks and fluxes. Lidar
data provided substantial constraints on model estimates of both carbon stocks and net
carbon fluxes. Lidar-initialized ED estimates of aboveground biomass were within 1.2% of
regression-based approaches, and corresponding model estimates of net carbon fluxes dif-
fered substantially from bracketing alternatives. The results of this study provide a prom-
ising illustration of the power of combining lidar data on vegetation height with a height-
structured ecosystem model. Extending these analyses to larger scales will require the
development of regional and global lidar data sets, and the continued development and
application of height structured ecosystem models.
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INTRODUCTION

Large-scale estimates of terrestrial carbon stocks and
fluxes are uncertain, particularly over regions where
measurements are sparse. Regional carbon stocks have
been estimated primarily by extrapolating data ob-
tained in soil surveys and ground-based measurements
made on individual trees (Post et al. 1982, Olson et al.
1983). Uncertainties among such estimates can be as
large as a factor of two or more in some regions
(Houghton et al. 2001). Regional estimates of carbon
fluxes have been made using various methods including
repeatedly inventoried ground plots (Birdsey and
Schreuder 1992, Phillips et al. 1998, Goodale et al.
2002), flux-tower measurements (Wofsy et al. 1993,
Grace et al. 1995, Goulden et al. 1996, Baldocchi et
al. 2001), and inversion of atmospheric tracer–transport
models (Fan et al. 1998, Battle et al. 2000, Ciais et al.
2000, Gloor et al. 2000, Gurney et al. 2002). Even in
the most intensively studied regions, the limited num-
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ber of ground-based measurements, sparse nature of
the flux tower network, and the coarse effective reso-
lution of inversion methods make it difficult to resolve
the spatial and temporal heterogeneity in stocks and
fluxes required for more accurate estimates at regional
scales. Improving the estimates of regional carbon
stocks and fluxes in most areas will require more data
from multiple scales and sources.

In addition to data, models are needed for synthe-
sizing knowledge gained in local studies and for mak-
ing projections. For models to be reliable tools, how-
ever, they must be thoroughly tested and initialized to
reflect nonequilibrium conditions where they exist.
Natural disturbance, land use, and regrowth, for ex-
ample, are processes occurring at many spatial and tem-
poral scales on the landscape that have traditionally
been difficult to track empirically and in regional mod-
els. From blowdowns to fires, logging, agriculture, and
abandoned agricultural plots, landscapes are generally
composed of a heterogeneous mixture of patches of
different successional ages. Both ecosystem structure
and carbon fluxes vary strongly with successional age
(e.g., Botkin et al. 1972, Shugart and West 1977, Shu-
gart 1984), and without an accurate initialization of
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these conditions, even the best models are limited in
their ability to make reliable projections on policy-
relevant time scales.

There are three major approaches to obtaining initial
land-surface conditions for ecosystem models. The
most common is to assume that vegetation is in its
‘‘potential’’ state, i.e., for any land cover class (e.g.,
broadleaf evergreen) the vegetation is assumed to be
in its final condition as determined by climate. This
approach has been commonly used in studies that as-
sess ecosystem dynamics in the absence of land use
and other disturbance events (Melillo et al. 1993, Potter
et al. 1998, Tian et al. 1999). However, without knowl-
edge of land-use activities or the current successional
status of lands recovering from prior land use and nat-
ural disturbances, carbon estimates for a given area
assuming the potential state may be highly inaccurate.
For example, a forest in early stages of secondary re-
growth likely will have a very different carbon stock
and net carbon flux than a mature forest in the same
area.

A second approach to obtain initial conditions is to
‘‘spin-up’’ models to the present using land-use history
information as input. Such an approach has recently
been used to estimate the past and current state of U.S.
ecosystems as a basis for projecting the future of the
U.S. carbon sink (Hurtt et al. 2002). While efforts to
construct relevant global land-use history products are
needed and ongoing (Ramankutty and Foley 1999, Gol-
dewijk 2001), adequate historical reconstructions are
difficult to compile, have significant uncertainties, and
are currently unavailable in many regions. In tropical
regions, the needed information is typically sparse or
nonexistent (Brown 1997).

A third route is to measure initial conditions directly.
In principle, the effects of prior land use and distur-
bances are manifested in the current state of ecosys-
tems. On forested lands, relevant metrics of forest
structure include diameter at breast height (dbh),
height, species identification, and other attributes. Di-
rect measurements can be obtained on individual plants
over plot-sized areas, and potentially over larger areas
with statistical sampling approaches such as that used
in the U.S. Forest Inventory (Birdsey and Schreuder
1992, Gillespie 1999). However, limited resources and
access can make ground-based studies prohibitive in
at least some areas. Standardizing field protocols be-
tween different regions present additional challenges.

Remote sensing provides another approach for ob-
taining initial conditions over large areas. Optical re-
mote sensing strategies have successfully been used to
characterize land cover, land-cover change, phenology,
and other important properties of ecosystems (Skole
and Tucker 1993, Myneni et al. 1997, Belward et al.
1999). Optical information has also been used to infer
biomass and successional status (Foody et al. 1996,
Curran et al. 1997, Lucas et al. 2000, Nelson et al.
2000, Steininger 2000, Myneni et al. 2001). However,

many optical metrics, such as those related to leaf area
index (LAI), saturate much earlier in succession than
biomass and other important structural properties. Pas-
sive radar techniques have also made strides in esti-
mating biomass, but have similar challenges (Kasi-
schke et al. 1997). Neither passive optical nor passive
radar techniques directly measure the vertical com-
ponents of the vegetation canopy. Even if such canopy
data were available, say for example, a histogram of
tree heights for an area, most ecosystem models are
not structured such that they could easily assimilate
these data.

There have been two recent developments, one in
remote sensing technology, the other in ecosystem
modeling, that offer the potential for improved carbon
estimates based on more accurate representation of ini-
tial vegetation conditions. The first is the maturation
of airborne and space-based lidar remote sensing of
vegetation canopy height structure (Dubayah and
Drake 2000, Dubayah et al. 2000, Lefsky et al. 2002).
Recent studies have validated the ability of lidar to
measure canopy height and vertical structure (e.g., Lef-
sky et al. 1999a, Peterson 2000, Harding et al. 2001,
Drake et al. 2002b). It has also been shown that such
data can be used to infer associated biophysical vari-
ables, such as aboveground biomass, with unprece-
dented accuracy and consistency, even in the most com-
plex canopies, and over large areas (e.g., Lefsky et al.
1999b, Means et al. 1999, Lefsky et al. 2001, Drake
et al. 2002a, b, Drake et al. 2003). The second is the
development of a new height-structured terrestrial eco-
system model, the ecosystem demography (ED) model
(Hurtt et al. 1998, 2002, Moorcroft et al. 2001). ED is
particularly amenable to initialization and testing with
field and remote sensing data because it is defined at
the scale of individual plants. Furthermore, because ED
is height structured, its use of canopy structure derived
from lidar data is natural and immediate.

The goal of this study was to assess the potential for
using lidar observations of tropical forest structure to
initialize the ED model for improved estimates of car-
bon stocks and fluxes. Our approach focused on La
Selva, Costa Rica, and used the simplest lidar metric,
mean canopy height. First, we tested that ED accurately
predicts biomass as a function of canopy height for this
site. We next used lidar data to initialize ED to produce
spatial estimates of aboveground carbon stocks and net
fluxes. Comparisons of the ED-based estimates with
field data and regression-based estimates served the
dual purpose of enabling an assessment of the efficacy
of our approach to model initialization, while providing
a validation of important aspects of the ED model.

NEW DEVELOPMENTS

Lidar (light detecting and ranging) remote sensing
is an active technology, analogous to radar, but using
laser light (Dubayah and Drake 2000, Dubayah et al.
2000, Lefsky et al. 2002). Pulses of laser energy are
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FIG. 1. Remote sensing of canopy vertical structure using the Laser Vegetation Imaging Sensor (LVIS). LVIS images a
1-km swath of 25-m footprints, as shown on left. Each return waveform within a footprint records the amount of nadir
reflectance as a function of height, giving the vertical distribution of leaves and branches as shown on the graph at right. A
greater amplitude (intensity) is indicative of more canopy material at that height. Canopy height is determined by subtracting
the range to the ground from that to the first detectable return or some threshold above that return. Metrics derived from the
waveform, such as the height of median energy and the cumulative return, also have been shown to be useful metrics for
ecological applications.

fired towards the surface where they reflect off the
various structural elements of the surface, such as
leaves, branches, and ground. The incident pulse is
extended in time (usually Gaussian in shape) so that
the return signal is extended as well. The incident
Gaussian waveform is returned as a reflected waveform
that provides a record of the vertical structure of the
surface. Lidar systems record the roundtrip time for
these pulses of laser energy to travel between the in-
strument and the surface, enabling a distance or range
measurement to be taken. Where the return signal also
includes a return from the ground, the difference in
range from the top of the canopy to ground provides
a measurement of the height of the canopy. Similarly,
by reference to the ground, the height of any element
of vertical forest structure (e.g., the bottom of the can-
opy or midstory) may be estimated (see Fig. 1).

Numerous studies have validated the ability of lidar
to measure canopy height and canopy vertical structure
in a variety of forest ecosystems (e.g., Nelson et al.
1988, Naesset 1997, Magnussen et al. 1999, Lefsky et
al. 1999a, Drake and Weishampel 2000, Peterson 2000,
Harding et al. 2001, Parker et al. 2001, Drake et al.
2002b). Lidar may also be used to infer associated bio-
physical variables, such as aboveground biomass, with
high accuracy and consistency (e.g., Lefsky et al.
1999b, 2001, Means et al. 1999, Harding 2001, Drake
et al. 2002a, b). Recent results from the Vegetation
Canopy Lidar (Dubayah et al. 1997) calibration/vali-
dation campaign over dense tropical forests surround-
ing La Selva Biological Station have confirmed that
lidar data may be used to accurately retrieve canopy
heights, basal area, mean stem diameter, and above-
ground carbon across a spectrum of successional con-
ditions (Peterson 2000, Drake et al. 2002a). As such,
lidar instruments provide a suite of important land sur-
face characteristics (Dubayah and Drake 2000) that can

be used to initialize terrestrial ecosystem models (see
Lefsky et al. 2002 for a review of lidar applications in
terrestrial ecology).

A second development is an individual-based ter-
restrial ecosystem model, ED (ecosystem demogra-
phy), that addresses the challenges of scaling up local
heterogeneity in studies of regional ecosystem dynam-
ics (Hurtt et al. 1998, 2002, Moorcroft et al. 2001). ED
is a stochastic simulator of vegetation dynamics with
integrated submodels of plant growth, mortality, phe-
nology, biodiversity, disturbance, hydrology, and soil
biogeochemistry. Individual plants of different func-
tional types compete mechanistically in ED under local
environmental conditions for light, water, and nutrients.
ED differs from most other terrestrial models by for-
mally scaling up physiological processes through veg-
etation dynamics to ecosystem scales, while simulta-
neously modeling natural disturbances, land use, and
the dynamics of recovering lands. ED has recently been
implemented in South and Central America (Moorcroft
et al. 2001), the United States (Hurtt et al. 2002), and
is under development as a global model. Of particular
relevance to this study is the fact that all plants in ED
have an explicit height, a property that creates the po-
tential for direct connection to lidar remote sensing.

STUDY AREA AND DATA

La Selva Biological Station is located in the Atlantic
lowlands of northeastern Costa Rica at 35–150 m el-
evation near the town of Puerto Veijo de Sarapiqui.
The area is classified as Tropical Wet Forest (Holdridge
et al. 1971, Hartshorn and Hammel 1994) and receives
a mean rainfall of 4000 mm per year (Sanford et al.
1994, Matlock and Hartshorn 1999).9 La Selva has been
well characterized in terms of forest demography and

9 URL: ^http://www.ots.duke.edu/en/laselva/&
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FIG. 2. (a) Map of canopy heights measured by Laser Vegetation Imaging Sensor (LVIS) and a corresponding land cover
map of La Selva Biological Station in Costa Rica. (b) Distribution of mean canopy heights measured by LVIS from areas
with three different land-use histories. The spatial patterns of canopy heights illustrate the utility for using lidar to distinguish
among forests in various stages of succession.

structure (e.g., Guariguata et al. 1997, Clark and Clark
2000), land-use history (Pierce 1992, Read et al. 2001),
edaphic conditions (Clark et al. 1999) and many other
biotic and abiotic characteristics (McDade et al. 1994).
In addition, a 50 3 100 m grid system with permanent
monuments has been precisely surveyed and installed
over a large portion of the landscape enabling the geo-
referencing of the landscape with remote sensing and
other ancillary data (e.g., see Rocchio 2000, Hofton et
al. 2002).

La Selva has an important history of land use that
is still evident in the structure of the vegetation and
the functioning of the ecosystems found there (McDade
et al. 1994). The landscape is comprised of a mixture
of plantations and agroforestry patches, secondary for-
ests of various ages, selectively logged forests, and old-
growth tropical wet forests. In addition, the soil types
at La Selva are found in ;52% of the lowland tropics.
Field measurements from areas with different land-use
histories were used to derive plot-level mean canopy
heights and aboveground biomass estimates.

In March of 1998, the laser vegetation imaging sen-
sor (LVIS; Blair et al. 1999, Dubayah et al. 2000) col-
lected lidar data over areas of Costa Rica including La
Selva. LVIS was flown at an altitude of ;8 km with a
nominal footprint size of 25 m diameter. LVIS foot-

prints were spaced every ;9 m across track, for a total
swath width of 1 km, and were spaced ;27 m along
track for approximately contiguous coverage. The re-
turn waveform was digitized at 60 cm vertical incre-
ments giving a detailed description of canopy vertical
structure. Several flights were conducted over La Selva
to provide nearly complete coverage (Fig. 2).

METHODS AND RESULTS

Our goal was to combine lidar data and a height-
structured ecosystem model to take advantage of the
relationships that exist between vegetation height and
ecosystem structure and dynamics. These relationships
are expected to exist because as forests grow during
succession, plants get larger and taller, and stand level
biomass tends to accumulate at a decelerating rate (Bot-
kin et al. 1972, Shugart and West 1977, Shugart 1984,
Saldarriaga et al. 1988, Moorcroft et al. 2001). There-
fore, information on vegetation height should be a pow-
erful indicator of important ecosystem properties. To
illustrate this idea, we ran ED (ecosystem demography)
under climatological conditions to produce projections
of how forest structure can be expected to change
through succession at La Selva. ED estimates were cal-
culated using the version of ED described in Moorcroft
et al. (2001), and following that study, used the mean
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FIG. 3. Normalized (fraction of maximum value) esti-
mates from the ED (ecosystem demography) model of leaf
area index (LAI), mean canopy height, and aboveground bio-
mass through time for La Selva, Costa Rica. To produce these
estimates, ED was run from an initial condition of seedlings
of all functional types as specified in Moorcroft et al. (2001).
LAI saturates relatively quickly as a function of stand age.
In contrast, mean canopy height and biomass saturate over
longer time periods. This implies that conventional remote
sensing approaches may not easily be able to distinguish pri-
mary from secondary forests, while lidar-derived height data
should provide more information on successional status.

FIG. 4. Summary of the methodology for the regression-based and ED (ecosystem demography)-based approaches. The
top row illustrates the regression-based approach in which field data and lidar data are statistically related and used to produce
mapped estimates of carbon stocks. The bottom row illustrates the use of lidar data to initialize the ED model to produce
mapped estimates of carbon stocks and net fluxes. Regression-based and ED-based estimates of carbon stocks are compared
for validation.

values of 1987 and 1988 climate data from NASA-
ISLSCP (International Satellite Land Surface Clima-
tology Project) Initiative I (Meeson et al. 1995, Sellers
et al. 1995). Normalized model output for three im-
portant variables: aboveground biomass, mean canopy

height, and LAI are shown in Fig. 3. Note that biomass
is projected to take more than 200 years to equilibrate.
LAI, in contrast, is expected to saturate in only 10–15
years at ;12% of the final biomass. Mean canopy
height saturates more slowly than LAI and is therefore
expected to be an informative indicator of biomass later
into succession. Mean canopy height is also retrievable
by lidar.

Given these expected relationships between canopy
height and ecosystem structure, we assessed the effi-
cacy of using lidar data with the ED model at La Selva.
We first produced a map of aboveground carbon stocks
for validation by applying an empirical relationship
between field-based estimates of carbon and the height
of median energy derived by lidar (described later in
the Methods and results). We then produced a com-
parable map of ED estimates of aboveground carbon
stocks using lidar estimates of canopy height to ini-
tialize the ED model. Thus initialized, ED was used to
produce corresponding estimates of the spatial distri-
bution of mean aboveground net carbon fluxes over the
region. This methodology is summarized in Fig. 4. Be-
fore implementing this methodology, we first validated
ED estimates of biomass as a function of canopy height.

Biomass estimates as a function of canopy height

Before lidar data may be used to initialize ED, it is
important to verify that there is close agreement be-
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FIG. 5. Estimates of aboveground biomass at La Selva
from field-based, regression-based, and ED (ecosystem de-
mography)-based methods in stands of different mean canopy
height (representing different canopy ages).

FIG. 6. Aboveground carbon estimates from regression-
based (lidar) and ED (ecosystem demography)-based methods
as a function of mean canopy height. The solid line gives the
relationship between carbon stocks and lidar height, with
dashed lines showing the 95% confidence bounds (assuming
a zero intercept). Note that the ED model estimates of carbon
as a function of height are within the confidence bounds
across most of the height range. Above 29 m, ED estimates
asymptote earlier than observed in the field.

tween field-based and model-based estimates of bio-
mass as a function of vegetation height. If this is not
the case, then initialization of ED using stand height
would lead to an inaccurate initialization of biomass.
To investigate this, we compared ED estimates of
aboveground biomass (AGB) with estimates from field-
based and regression-based techniques at four key plots
in the domain (Fig. 5). These plots differ in succes-
sional age, and are 14, 22, 33 years old, and ‘‘old
growth,’’ respectively. Field-based estimates of plot-
level AGB were estimated by applying a tropical wet
forest equation (Brown 1997) to all stem diameters
($10 cm at breast height or above buttressing) in 18
old-growth forest plots (0.5 ha per plot), three second-
ary forest plots (0.5 ha per plot), and three agroforestry
plots (0.25 ha per plot) (see Drake et al. 2002a, 2003).

Regression-based estimates were produced using the
lidar height of median energy metric and applying a
plot-level linear regression equation between this sta-
tistic and the field-estimated AGB after Drake et al.
(2002a). The height of median energy and mean canopy
height were shown to be highly correlated with each
other and both are strong predictors of biomass (Drake
et al. 2002a). However, because the former produced
significantly better results, it is the metric we use here.
Note that because the relationships between lidar and
field-based estimates of AGB have already been de-
veloped and validated (Drake et al. 2002a), either could
have been used for plot-level comparisons with ED.
We have presented both for clarity and to illustrate the
strength of the relationship between lidar and field-
based estimates of AGB. ED-based estimates of AGB
were obtained using lidar estimates of mean canopy
height as an index to the set of ED model estimates
representing 0–200 years of succession at the site.

ED-based and regression-based estimates of AGB
agree well with field estimates at all four plots (Fig.
5). This suggests that ED produces a reasonable rela-
tionship between biomass and mean canopy height and

serves as a partial validation of model structure and
parameterization. To investigate this further, we plotted
regression-based and ED-based estimates of above-
ground biomass as a continuous function of mean can-
opy height. To convert biomass to carbon units, we
assumed a carbon to biomass ratio of 0.5. Regression-
based and ED-based estimates are in close agreement
up to a mean canopy height of ;29 m (Fig. 6). This
result provides the basis for using lidar measurements
to produce a reliable initialization of the aboveground
biomass within ED. Above 29 m, the comparison de-
grades because the mean canopy height in ED asymp-
totes earlier than observed. The consequences of this
property of the model are evaluated below.

Spatial distribution of aboveground carbon stocks

Given that there was close agreement between re-
gression-based and ED-based techniques, we next ini-
tialized ED with lidar data to produce a map of esti-
mated carbon stocks that can be compared to a map of
carbon stocks produced using a regression-based ap-
proach. To produce the regression-based map, we cre-
ated a spatial grid of lidar height of median energy at
1.0 ha resolution, and used these values as input to the
regression equation (Drake et al. 2002a). The map of
ED estimates was created by first producing a spatial
grid of lidar mean canopy heights at 1.0 ha. The values
in this grid were then used to index a set of ED model
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FIG. 7. Estimates of aboveground carbon stocks using lidar data as input to (a) regression-based (lidar), and (b) ED
(ecosystem demography)-based methods. (c) Map of the differences between the regression-based and ED-based estimates
(lidar–ED). (d) Histogram of the differences mapped in panel c.

FIG. 8. ED (ecosystem demography)-based estimates of
mean aboveground net flux (kg C·m22·yr21) using lidar mean
canopy height for input. To produce these results, ED was
run with the means of 1987 and 1998 climate data from
NASA-ISLSCP Initiative I, as described in Moorcroft et al.
(2001).

results that relate aboveground carbon stocks to canopy
height.

Fig. 7 illustrates the close agreement between the
regression-based and ED-based maps of carbon stocks.
Using a map of land cover as a reference (Fig. 2), areas
of abandoned pastures, secondary forest, and old-
growth forest are all clearly distinguishable by their
different carbon densities in both the ED-based and the
regression-based maps. Areas of secondary forest in
the northwestern portion of La Selva were estimated

to have lower carbon densities than adjacent patches
of old-growth forest. The map of differences between
the two techniques (Fig. 7c) showed little spatial co-
herence in the differences, and the histogram of dif-
ferences (Fig. 7d) had a mean close to zero, suggesting
little if any systematic error or bias. In addition to this
spatial similarity, there was also close agreement be-
tween the estimates of area totals using both tech-
niques. The total aboveground carbon stock within the
La Selva boundary was estimated to be 118 658 Mg
using ED and 119 988 Mg using the regression-based
approach. These estimates translated to a domain mean
of 6.92 kg C/m2 and 7.0 kg C/m2, respectively, a dif-
ference of 1.2%.

Spatial distribution of aboveground carbon fluxes

We next used lidar data and ED to produce spatially
resolved estimates of mean aboveground net carbon
flux. This involved using the same grid of canopy
heights used above to index ED estimates of mean
aboveground net carbon flux. These estimates are gen-
erally a decreasing function of mean canopy height,
because as stands get taller and accumulate more bio-
mass during succession, they tend to approach an equi-
librium state when growth equals mortality (in constant
environmental conditions). The specific set of estimates
produced are for ‘‘average’’ climate conditions as de-
fined by the two-year mean climate data used as model
input (Moorcroft et al. 2001).
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FIG. 9. Estimates of domain mean aboveground carbon
stocks (bars) and net carbon fluxes (dashed line). ED-based
estimates use lidar canopy height data for initialization, and
range bars indicate the range of uncertainty in stocks and
fluxes. For comparison, B1 and B2 are ‘‘bracketing’’ sce-
narios that do not use lidar data for model initialization. The
entire domain is assumed to be early in succession in B1 and
late in succession in B2.

Fig. 8 shows the spatial estimates of average above-
ground net carbon flux from ED. Areas of abandoned
pastures, secondary forest and old-growth forest are all
clearly distinguishable by their estimated fluxes. Areas
of relatively low mean canopy height (e.g., secondary
regrowth) were estimated to be accumulating carbon
relatively quickly, whereas areas of relatively high
mean canopy height (e.g., older growth) were estimated
to have lower net carbon fluxes. The total mean above-
ground net carbon flux within the La Selva boundary
was estimated to be 991 Mg C/y or 0.058 kg C·m22·yr21.

DISCUSSION

Data on vegetation canopy height collected from an
airborne large-footprint lidar instrument were effec-
tively used to initialize a height-structured ecosystem
dynamics (ED) model. The ability to obtain these initial
conditions from remotely sensed observations is a ma-
jor step forward in carbon modeling because it ulti-
mately allows for carbon flux predictions based not on
potential vegetation, but the actual vegetation structure
present. In so far as the structure is representative of
the actual successional state of forest, vis a vis land-
use history and disturbance, the resulting estimated
stocks and fluxes should be more accurate. Other re-
mote sensing techniques may not be as well suited to
initialize terrestrial ecosystem models because the met-
rics they provide may reach an asymptote early in the
process of regrowth. In contrast, lidar remote sensing
measures vertical forest structure. The vertical struc-
tural properties of forests contain more information that
can be used to initialize the aboveground state of ter-
restrial ecosystem models.

In general, it is exceptionally difficult to validate
terrestrial ecosystem models over large spatial scales
given the sparse plot network from which in situ ob-
servations of important diagnostic variables, such as
biomass, may be derived. It long has been a goal of
remote sensing to provide the ground truth required to
validate such models over large scales. The work pre-
sented here takes a significant step forward in that di-
rection. By statistically linking spatially continuous li-
dar data with sparse plot data, we were able to produce
spatially continuous fields of biomass and carbon that
could be compared with those from ED across the entire
landscape of La Selva. Even though lidar heights were
used to initialize ED, the overall agreement between
estimates from ED and those derived from field-based
and regression-based approaches nonetheless served as
validation of many aspects of the ED model.

The aboveground carbon content of terrestrial eco-
systems is the result of many factors including climate,
ecosystem dynamics, land use, disturbance, and others.
Even for a given canopy height, the ability of ED to
estimate reasonable values of biomass is a partial val-
idation of the model. To produce estimates of biomass,
ED must predict a reasonable combination of under-
lying plant density and size structure. The individual-

based plant allometry within ED is important to this,
but the estimates also depend on rates of plant growth,
recruitment, and mortality.

The ability to compare the spatial distribution of car-
bon stocks obtained from lidar using the regression-
based approach with comparable estimates from ED
provided opportunities to analyze model estimates in
ways not otherwise possible. The map of the differ-
ences between the two shows that in most cases there
was excellent agreement between ED and regression-
based estimates. Those areas where there are discrep-
ancies are easily identifiable spatially and provide the
basis for investigating model estimates further in a geo-
graphic context. For example, large differences oc-
curred in some isolated old-growth areas of La Selva
where regression-based estimates of carbon were great-
er than ED estimates. These errors occur because trees
in ED were parameterized to have a maximum height
that is shorter than observed at La Selva. Without this
methodology, identifying and understanding these dif-
ferences would be difficult.

The use of lidar data provided an important con-
straint on model estimates of carbon stocks and fluxes
beyond the assumption of potential vegetation. To il-
lustrate this, we estimated the range of uncertainty in
carbon stocks and fluxes assuming that no information
on vegetation height or successional status was avail-
able. In this case we have two ‘‘bracketing’’ scenarios.
In the first scenario, the entire domain is assumed to
be low biomass (‘‘young’’) and rapidly regrowing. In
the second scenario, the domain is assumed to be high
biomass (‘‘old growth’’) and in approximate carbon
balance. In these cases, mean aboveground carbon
stocks and aboveground net carbon fluxes were esti-
mated to be in the range of 1.0–11 kg C/m2 and 0.4–
0.0 kg C·m22·yr, respectively (Fig. 9). These ranges
included the range of relevant estimates from ED, as
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well as the regression-based estimates of plot level bio-
mass. For comparison, using lidar canopy height for
initialization of ED gave domain mean values of 6.1–
8.4 kg C/m2 and 0.04–0.08 kg C·m22·yr·21. To compute
these narrower ranges, we applied upper and lower
bounds for the biomass and associated carbon fluxes
to the plots with a height greater than or equal to the
maximum mean canopy height in ED. Specifically, for
one bound we assumed these plots all had the maximum
biomass estimated by ED after 200 years of simulation
and were in carbon balance (i.e., 10.5 kg C/m2, and 0.0
kg C·m22·yr21). For the other bound, we assumed these
plots all had the biomass and associated net carbon flux
of sites when they first reach the maximum canopy
height during succession (i.e., 6.7 kg C/m2 and 0.06 kg
C·m22·yr21).

In extending the analyses using lidar data and ED to
estimate aboveground net fluxes, forest patches with
low canopy heights were effectively assumed to be
younger in recovery from past disturbance, and hence
accumulating carbon faster than taller patches. How-
ever, some forest patches may contain relatively short
vegetation for other reasons, such as limitations caused
by fine-scale topography or edaphic factors. Detailed
information on two potential variables, slope and soil
type, were used to explore the importance of these fac-
tors at La Selva. We first examined the potential effects
of slope on canopy heights within old-growth plots. We
did not find a significant relationship between slope
and lidar canopy height within the old-growth areas (R2

5 0.032). We next looked for potential effects of soil
type on canopy height. We used five broad soil types
that were defined by Clark et al. (1999): recent allu-
vium, old alluvium, stream associated, swamp asso-
ciated, and residual soils (from former lava flows). An
ANOVA test for differences in lidar canopy height
within each soil category showed that there were sig-
nificant differences in canopy heights across soil cat-
egories (P , 0.01). A Bonferroni multiple comparison
test revealed that canopy heights in the residual soil
class were significantly different (P , 0.05) from all
other soil classes. The mean lidar canopy height in the
residual soil areas was 30.8 m, whereas the mean height
from the remaining soil classes was 33.6 m, a difference
of 2.8 m. This difference was near the limit of our lidar
height sensitivity at La Selva (Peterson 2000) and was
thus difficult to evaluate in terms of importance. In the
future, it is expected that ED will need to be extended
to track the consequences of these forms of fine-scale
environmental heterogeneity to yield improved esti-
mates of net carbon fluxes.

The approach presented here focused on the simplest
lidar metric, mean canopy height. Additional infor-
mation on ecosystem structure may be obtainable by
using other lidar metrics. For example, the subgrid
scale distribution of canopy heights and the vertical
foliar profiles may allow for improved description of
ecosystem state. There is a potential wealth of infor-

mation in lidar profiles and their spatial distributions
that is at this stage largely unexplored.

The results of this study provide a promising illus-
tration of the power of combining lidar data on veg-
etation height with a height-structured ecosystem mod-
el. Extending these analyses to larger scales will require
the development of regional and global lidar data sets,
and continued model development. The data used in
this study have been acquired as part of the VCL cal-
ibration and validation program for various biomes, but
have very limited spatial extents. The first global lidar
observations will come from the ICESat mission
(Zwally et al. 2002) and should prove useful for ex-
tending the approaches described here to large-scale
estimates of carbon stocks and fluxes.
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