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Tropical forests are an important component of the global carbon balance, yet there is considerable
uncertainty in estimates of their carbon stocks and fluxes, which are typically estimated through analysis of
aboveground biomass in field plots. Remote sensing technology is critical for assessing fine-scale spatial
variability of tropical forest biomass over broad spatial extents. The goal of our studywas to evaluate relatively
new technology, small-footprint, discrete-return lidar and hyperspectral sensors, for the estimation of
aboveground biomass in a Costa Rican tropical rain forest landscape. We derived a suite of predictive metrics
for field plots: lidar metrics were calculated from plot vertical height profiles and hyperspectral metrics
included fraction of spectral mixing endmembers and narrowband indices that respond to photosynthetic
vegetation, structure, senescence, health and water and lignin content. We used single- and two-variable
linear regression analyses to relate lidar and hyperspectral metrics to aboveground biomass of plantation,
managed parkland and old-growth forest plots. The best model using all 83 biomass plots included two lidar
metrics, plot-level mean height and maximum height, with an r2 of 0.90 and root-mean-square error (RMSE)
of 38.3 Mg/ha. When the analysis was constrained to plantation plots, which had the most accurate field data,
the r2 of the model increased to 0.96, with RMSE of 10.8 Mg/ha (n=32). Hyperspectral metrics provided
lower accuracy in estimating biomass than lidar metrics, and models with a single lidar and hyperspectral
metric were no better than the best model using two lidar metrics. These results should be viewed as an initial
assessment of using these combined sensors to estimate tropical forest biomass; hyperspectral data were
reduced to nine indices and three spectral mixture fractions, lidar data were limited to first-return canopy
height, sensors were flown only once at different seasons, and we explored only linear regression for
modeling. However, this study does support conclusions from studies at this and other climate zones that
lidar is a premier instrument for mapping biomass (i.e., carbon stocks) across broad spatial scales.
.
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1. Introduction

Tropical forests store a large proportion of terrestrial carbon. For
example, Dixon et al. (1994) estimated that low-latitude tropical forests
contain 59% and 27% of carbon stored in global forest vegetation and soil
pools, respectively. There still remains considerable uncertainty in
global and regional estimates of carbon stocks and dynamics. Regional
differences in average biomasswere up to 40Mg C/Hawhen comparing
results from land-use change models to estimates by the FAO for 1980,
1990 and 2000 (Houghton, 2005). This uncertainty in biomass
distribution contributes substantial error in estimates of carbon
emissions from deforestation, the dominant land-cover change
(Houghton, 2005), and forest degradation (Nepstad et al., 1999).
Accurate estimates of biomass, particularly at the scale of land-use
change, are critical for monitoring carbon dynamics in tropical regions
and improving our understanding of the global carbon cycle.

Current methods for biomass estimation include interpolation from
relatively smallfield plots, regional-scalemodeling, and remote sensing.
These techniques provide estimates of average carbon stocks over a
region, but only remote sensing can map the fine-scale variability of
biomass over broad spatial extents. Since many important human and
natural forest disturbances occur at fine spatial scales, such as selective
logging and tree falls, remote sensing has immensepotential to improve
our understanding of the magnitude of biomass change at multiple
scales (Houghton, 2005). Furthermore, remote sensing technology will
likely play an important role inmonitoring broad-scale carbon stocks and
flux within the framework of international policies to reduce greenhouse
gases, such as those by the United Nations Framework Convention on
Climate Change (UNFCCC) and the newly-funded program for reducing

http://dx.doi.org/10.1016/j.rse.2010.08.029
mailto:mateolclark@gmail.com
http://dx.doi.org/10.1016/j.rse.2010.08.029
http://www.sciencedirect.com/science/journal/00344257


2932 M.L. Clark et al. / Remote Sensing of Environment 115 (2011) 2931–2942
emissions from deforestation and forest degradation, or REDD (Angelsen
et al., 2009; DeFries et al., 2007; Rosenqvist et al., 2003).

Remote sensing of estimated aboveground biomass (hereafter
referred to as biomass) in the tropics has traditionally focused on the
use of imagery from passive optical and synthetic aperture radar (SAR)
sensors. Broadband indices from passive optical satellite imagery, such
as the Normalized Difference Vegetation Index (NDVI), have been
correlatedwith biomass in tropical landscapes (Foody et al., 2003; Sader
et al., 1989; Steininger, 2000). However, the relationship typically holds
only across young secondary tropical forest types asNDVI saturateswith
the increased leaf area found in older, structurally complex forests. SAR
backscatter responds to the structural and dielectric (i.e.,water content)
properties of vegetation and, in contrast to optical sensors, penetrates
clouds — an important capability in tropical regions. Metrics from SAR
are sensitive to biomass for secondary tropical forests up to N60 Mg/ha
(Luckman et al., 1997), yet this sensitivity decreases when estimating
biomass of denser forests (Imhoff, 1995; Kasischke et al., 1997; Santos
et al., 2003). Furthermore, radar applications are limited by terrain,
speckle, and surfacemoisture (Rosenqvist et al., 2003). Recently, Saatchi
et al. (2007) demonstrated considerable potential from sensor fusion, in
which a binary decision tree was used to select from a combination of
SARandoptical variables to estimate biomassover theBrazilianAmazon
with an overall accuracy of 81% over a biomass range between 100 and
400 Mg/Ha.

Light detection and ranging (lidar) is a highly successful technology
for estimating forest height, volume and biomass (Clark et al., 2004;
Drake et al., 2002; Lefsky et al., 2002a, b; Næsset, 1997; Nilsson, 1996).
Full-waveform lidar sensors record a detailed height distribution of
surfaces illuminated by the laser pulse in footprints from 1 to 80 m and
can be found on spaceborne systems, such as the Geoscience Laser
Altimeter System (GLAS) sensor on the ICESat satellite (Lefsky et al.,
2002b; Lefsky et al., 2007). In contrast, small-footprint lidar sensors
record discrete heights at peak returns of light within 0.25- to 0.60-m
footprints and are typically flown in helicopters or airplanes (Lefsky
et al., 2002b). Small-footprint datasets tend to have high point density
and their multiple discrete heights can be used to synthesize a height
profile, similar toawaveform,over anarea suchasaplot or an individual
tree (Blair & Hofton, 1999; Lefsky et al., 2002b).

Therehas been a considerable amount of researchusing lidar sensors
to assess structural properties of temperate and boreal forests, yet few
studies come from tropical forests. Drake et al. (2002) usedmetrics from
large-footprint lidarwaveforms (LVIS sensor, 25-mdiameter footprints)
to estimate plot-scale quadratic mean stem diameter, basal area, and
biomass over a range of tropical forests at the La Selva Biological Station,
Costa Rica. An important metric was the height of median energy
(HOME)of thewaveformabove themeannoise level,which responds to
returns from ground and canopy surfaces, and is sensitive to vertical
canopy structure and openness. A regression model using HOME to
estimate biomass had an r2 of 0.89, root-mean-square error (RMSE) of
22.5 Mg/ha, and did not saturate with increasing forest height and
complexity. In a later study, the HOME metric was not as strong in
predicting biomass of seasonally drier tropical forests in Panama (Drake
et al., 2003). This lack of generality across sites was attributed to
differences in allometric equations used to estimate plot-level biomass
from stem diameter at the two sites. Clark et al. (2004) demonstrated
the effectiveness of a small-footprint lidar (FLI-MAP sensor used in this
study) to estimate mean tree height for plantation plots at La Selva.
Plantations with average height from 0.4 to 18.5 m were estimated
using plot mean lidar height with a model r2 of 0.97 and 1.08-m RMSE.
Lefsky et al. (2007) presented a new method to estimate forest height
fromGLAS large-footprint (52 to 90 m)waveforms. The effect of terrain
on waveforms was reduced using correction factors derived from field
and airborne lidar, and thefinal cross-sitemodel estimated heightswith
an r2 of 0.83 and RMSE of 5 m.

Hyperspectral sensors, or imaging spectrometers, typically measure
the electromagnetic spectrum in N100 narrow bands spanning 400 to
2500 nm. Data from these passive sensors are sensitive to forest
biochemistry and biophysical properties (Asner, 1998). For tropical and
sub-tropical forests, airborne and satellite hyperspectral sensors have
been found useful for spectral discrimination of tree species, functional
groups and biodiversity (Asner et al., 2008a, b; Carlson et al., 2007; Clark
et al., 2005; Kalacska et al., 2007a; Lucas et al., 2008), assessing canopy
biochemistry and physiology (Asner et al., 2006; Asner & Vitousek,
2005), and leaf- to canopy-scale structure (Asner et al., 2008a; Kalacska
et al., 2007b). It is anticipated that a synergy of information from
hyperspectral and lidar sensors can improve estimates of biomass and
other forest structure properties, especially if hyperspectral data are
used to provide canopy species, phenology, stress and biochemical
information (Asner et al., 2007; Asner et al., 2008b; Koetz et al., 2007;
Rosenqvist, et al., 2003; Swatantran et al., in press). In a northern
temperate forest, Anderson et al. (2008) used LVIS waveform metrics
(i.e., HOME) and hyperspectral minimum noise fraction transform
(MNF) bands to estimate biomass. The LVIS HOME metric predicted
biomass with an r2 of 0.27, 13 MNF bands predicted biomass with an r2

of 0.30, while the model r2 increased to 0.39 with combined lidar and
hyperspectral data. Swatantran et al. (in press) examined LVIS
waveform metrics and hyperspectral indices and spectral mixture
fractions for estimating biomass of Sierra Nevada, California mixed-
conifer forests. Biomass was best estimated with lidar metrics over
hyperspectralmetrics, although therewasnon-significant evidence that
species-level stratification, obtained from hyperspectral analysis, could
improve biomass estimates.

The goal of our study was to assess small-footprint lidar and
hyperspectral datasets for the estimation of aboveground biomass in a
tropical rain forest landscape. We derive a suite of lidar and
hyperspectral metrics that were thought to respond to vegetation
biomass in tropical and other ecosystems and we use linear regression
to estimate plot-scale aboveground biomass from these metrics.

2. Methods

2.1. Study site and materials

2.1.1. Study site
This study was conducted at La Selva Biological Station, a research

reserve managed by the Organization for Tropical Studies (OTS) in the
Sarapiquí cantón of Costa Rica (84°00′13.0″W, 10°25′52.5″ N). This site
receives on average 4244 mmofprecipitation annually,with a relatively
dry season from January to April and a second, less severe dry season
from August to October, with monthly average precipitation of 217 and
395 mm for the two dry seasons, respectively (Frankie et al., 1974; OTS
meteorological data 1957–2006, http://www.ots.ac.cr). The old-growth
forest in the reserve is classified as Tropical Wet Forest in the Holdridge
Life Zone system(Holdridge, 1971) and includes at least 400 tree species
(OTS flora data, http://www.ots.ac.cr).

2.1.2. Field data
Wefocusedouranalysesonplots established inold-growth forest and

experimental plantations within the reserve (Fig. 1). Old-growth plot
data came from 18 0.5-ha long-term study plots, which are randomly
placedwithin three edaphic types: relatively fertile inceptisols onflat, old
alluvial terraces, relatively infertile ultisols areas along ridges, andultisols
on steep slopes (CARBONO Project; Clark & Clark, 2000). The plots were
mapped within the La Selva grid system and converted to the UTM Zone
16 projection, WGS84 datum using a linear transformation equation
(Clark et al., 2004). Each 0.5-ha CARBONO plot (Fig. 1; Fig. 2—white line
in old-growth inset) has x,y locations of tree stems measured relative to
each plot's origin. These stems were mapped in the La Selva grid system
for each plot, and then all stemswere reprojected to the UTMprojection.
Each 0.5-ha plot (macroplot) was divided into 3 square subplots with
30 m sides (0.09 ha) and spaced 5 m apart (Fig. 2 — solid lines in old-
growth). Aboveground biomass for each tree N10-cm diameter within

http://www.ots.ac.cr
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Fig. 1. La Selva Biological Station study site and extent of HYDICE hyperspectral and FLI-MAP lidar datasets.
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the subplots was estimated using the tropical wet forest allometric
equation (Eq. 1) provided by Brown (1997):

biomass = 21:297−6:953 Dð Þ + 0:740 D2
� �

ð1Þ

whereD is the tree stem diameter (at 1.3 m or above basal irregularities
such as buttresses) and biomass is the estimated oven-dried above-
ground biomass (in kg) for the tree. Stem diameter data from a
September to early November, 1997 census by the CARBONO crewwere
used in the biomass calculations (n=1950, D=10–999 cm, mean
447 cm).Note that Eq. (1) is basedon169 treeswithdiameters from4 to
112 cm (half from Costa Rica) and does not take into consideration
species differences in wood density or structure; and thus, these field
data should be considered as estimates and not “ground truth”. Plot-
level biomass was calculated by dividing the sum of all tree biomass by
the subplot area (reported inMg/ha). Plot biomass values and lidar data
come from roughly the same time frame; however, the hyperspectral
Fig. 2. Example of lidar-derived digital canopy model (DCM) and biomass plots for plantatio
represents 0.5-ha CARBONO macroplot plot containing three 30×30-m subplots, black line
flight occurred in early 1998, about 5 months after the CARBONO
census, and soplot biomass values are lower thanwould be expected for
analyses that use hyperspectral data.

An additional 8 plots of the same dimensions (0.09 ha) were
established using stem data acquired in the La Selva's arboretum, a site
embedded within old-growth forest on an old alluvial terrace. The
arboretum forest has native forest tree species but was cleared of
understory vegetation, creating a closed-canopy forest with an
herbaceous parkland understory. Stem diameter and x,y data came
froma1993census, although thedatawereupdated for treemortality in
1997 (Personal communication, Vargas, 2005). Stem diameters N10-cm
were used in calculating biomass (Eq. 1). Arboretum, or “managed
parkland forest”plots hadhaphazardorientations (Fig. 2). The x,y spatial
locations of tree stems within these plots were measured in the field
with reference to the La Selva grid system and were converted to the
UTM projection. These plots are expected to have low estimated
biomass values as stem diameter data are from 1993, while our remote
sensing data are from 1997 (lidar) and 1998 (hyperspectral).
ns, managed parkland forest and old-growth forest. The white line in old-growth forest
s (see Methods).

image of Fig.�2


Table 1
Formulas for narrowband indices (ρ is reflectance at a specific wavelength in nm).
Wavelengths chosen are the closest HYDICE wavelengths to the formulas in the cited
literature.

Photosynthetic vegetation, structure, senescence and health
Simple Ratio Tucker, 1979
SR=ρ798/ρ679 Jordan, 1969
Normalized Difference Vegetation Index Tucker, 1979
NDVI=(ρ798−ρ679)/(ρ798+ρ679) Rouse et al., 1973
Enhanced Vegetation Index Huete et al., 2002
EVI=(ρ798−ρ679)/
(1+ρ798+6 ρ679−7.5 ρ482)

Soil-Adjusted Vegetation Index Huete, 1988
SAVI=(1.5 ρ798−ρ679)/(ρ798+ρ679+0.5)
Red-Edge Vegetation Stress Index Merton & Huntington.,

1999RVSI=[(ρ719+ρ752)/2]−ρ730
Plant Senescence Reflectance Index Merzlyak et al., 1999
PSRI=(ρ679−ρ501)/ρ752

Water and lignin content
Water Band Index Peñuelas et al., 1997
WBI=ρ902/ρ973
Normalized Difference Water Index Gao, 1996
NDWI=(ρ862−ρ1239)/(ρ862+ρ1239)
Normalized Difference Lignin Index Serrano et al., 2002
NDLI=[log(1/ρ1748)− log(1/ρ1675)] / [log(1/ρ1748)
+log(1/ρ1675)]
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Plantation plot data were acquired by the HUERTOS Project in a
May–June, 1997 census (Menalled et al., 1998; plus unpublished data).
The plots were monocultures on 1-year (n=9; 0.04 ha each) or 4-year
(n=9; 0.08 ha each) cutting cycle, or monocultures and polycultures
that were uncut (n=14; 0.12 ha each) (Fig. 2 — plantations). Trees
were 2 m apart in all plots. At the time of the census, nine plots
contained 1-yr-old vegetation, nine had 2-yr-old vegetation, and 14 had
6-yr-old vegetation. The dominant tree species were Hyeronima
alchorneoides (Euphorbiaceae), Cedrela odorata (Meliaceae), or Cordia
alliodora (Borginaceae). Seven of the 14 uncut plots included a mixture
of one of the three tree species as well as a sub-canopy palm, Euterpe
oleracea (mean height 7.13 m), and a smaller understory herb,Heliconia
imbricata (mean height 1.53 m). The total aboveground biomass for
each individual plant was the sum of biomass estimated for tissue
components: leaves, rachises (for Cedrela and Euterpe), branches, and
boles (main stems). These component parts were estimated with
species allometric equations based on stem diameter, height, and
number of shoots (for Euterpe andHeliconia) thatwere developed using
destructive-harvest data from the site (Cole&Ewel, 2006). Equations for
biomass components of Cedrela, Cordia, Eutrepe and Hyeronima are
published in Cole and Ewel (2006), while Heliconia equations used
were:

Leaf leaf bladesð Þ: biomass = 0:148 H � Sð Þ1:188 ð2Þ

Stem petioles & stemsð Þ: biomass = 0:105 H � Sð Þ1:325 ð3Þ

Inflorescence flowers; largebracts; & fruitsð Þ: biomass = 1:008 H � Sð Þ0:681

ð4Þ

wherebiomass is estimateddryweight in gramsper clump(manygenets
per clump), H is the clump height in cm and S is the integer count of
shoots in a clump. Plot-level biomasswas calculatedby summingall plant
biomass in the plot and dividing by ground-measured area (Mg/ha). The
two-dimensional area of eachplantationplotwas generated in aGISwith
field specifications and then each plot was visually georeferenced to the
lidar DCM and hyperspectral datasets as separate layers. No visual
georeferencing was performed for old-growth or managed parkland
plots.

2.1.3. Lidar data
Lidar data were from the FLI-MAP sensor (John E. Chance &

Associates, Lafayette, Louisiana), which measured the first single-return
height above noise level in small footprints (~30 cm)with a 0.9-μmlaser
and a typical density of 9 points/m2 (see Clark et al., 2004 for more
details). The data were acquired from a helicopter in September 12 and
13, 1997 (Fig. 1), during the shorter, less pronounced dry season. Note
that the flight date was incorrectly identified as October, 1997 in Clark
et al., 2004. The original FLI-MAP lidar surface was processed to a raster
surface, or digital canopy model (DCM), measuring maximum vegeta-
tion height in 0.33-m cells (Clark et al., 2004). These data were analyzed
in the UTM projection, Zone 16 North with WGS84 datum.

2.1.4. Hyperspectral data
This study used 1.6-m spatial resolution, hyperspectral reflectance

imagery from the HYDICE (Hyperspectral Digital Imagery Collection
Experiment) airborne sensor (image extent shown in Fig. 1). The
HYDICE sensor measures 210 bands covering the 400–2500 nm region
of the electromagnetic spectrum (Basedow et al., 1995). HYDICE data
were acquired on March 30, 1998, at the end of the more pronounced
dry season. Atmospheric correction and orthorectification processing of
the imagery to the UTM Zone 16 North projection is described in Clark
et al. (2005). After removing bands with significant noise (e.g.,
atmospheric water absorption windows), the final dataset had 161
bands.
2.2. Lidar metrics

The DCM cell values within plots (0.04 to 0.13 Ha) were used to
calculate a suite of lidar metrics from the resulting plot vertical height
profile, or height histogram. These metrics included the mean height
(MeanHgt), mean of the 95th percentile of heights (Mean95pct),
median height (MedHgt), maximum height (MaxHgt), standard
deviation of heights (StdDevHgt), kurtosis, skewness, and the median
tomaximumheight ratio (MedMax). In addition, the percent of the plot
occupied by gaps (PctGap) was estimated by classifying gap cells as
those having a height less than 5 m height.

2.3. Hyperspectral metrics

Plot-level hyperspectral data were calculated by averaging spectra
from pixels within each plot. From these plot spectra, we computed a
suite of hyperspectral metrics–narrowband indices and spectral
mixture fractions–that respond to photosynthetic pigment, water and
other biochemical absorption features across the visible (VIS=437–
700 nm), near infrared (NIR=700–1327 nm) and shortwave infrared
(SWIR=1467–2435 nm) regions of the electromagnetic spectrum.
Plot-level hyperspectral metrics were then used in regression analyses
(Section 2.4).

2.3.1. Photosynthetic vegetation, structure, senescence and health indices
Metrics sensitive to photosynthesis and vegetation structure

included narrowband versions (Table 1) of the Simple Ratio Vegetation
Index (SR; Jordan, 1969; Tucker, 1979), Normalized Difference
Vegetation Index (NDVI; Rouse et al., 1973; Tucker, 1979), Soil Adjusted
Vegetation Index (SAVI: Huete, 1988), and Enhanced Vegetation Index
(EVI; Huete et al., 2002). SR and NDVI theoretically respond to canopy
chlorophyll concentration and absorption of red light, and scattering of
NIR photons within vegetation structure, making these indices
empirically correlated with leaf area index (LAI) and absorbed
photosynthetically active radiation (FPAR), respectively (Elvidge &
Chen, 1995; Hall et al., 1992; Myneni et al., 1995; Spanner et al., 1994).
NDVI tends to saturate in high biomass areas or in periods of maximum
LAI, and is sensitive to the brightness of background reflectance (Huete
et al., 1985; Spanner et al., 1994;Wang et al., 2005). SAVI (Huete, 1988)
is a modified form of the NDVI shown to be less sensitive to variation in
background reflectance. EVI has greater sensitivity than NDVI in areas



Table 2
Summary of field-measured aboveground biomass (Mg/ha) for plots located on the
lidar image (n=83) and both lidar and hyperspectral images (n=39).

Average Std Dev Min Max n

Lidar plots
Managed old-growth 193.3 69.0 98.0 271.6 8
Old-growth 168.5 52.3 76.4 278.9 43
Plantation 30.7 33.1 0.04 93.5 32
All plots 117.8 84.2 0.04 278.9 83

Lidar and hyperspectral plots
Managed old-growth 193.3 69.0 98.0 271.6 8
Old-growth 162.6 51.7 76.4 230.2 16
Plantation 31.5 32.5 0.04 87.1 15
All plots 118.4 85.5 0.04 271.6 39
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with high leaf area (i.e., does not saturate) and is designed to reduce the
influence of background reflectance and atmospheric noise in the
vegetation signal (Huete et al., 2002).

We included two indices that respond to vegetation phenology and
health: (Table 1) Red-edge Vegetation Stress Index (RVSI: Merton &
Huntington., 1999) and Plant Senescence Reflectance Index (PSRI;
Merzlyak et al., 1999). RVSI quantifies changes in the position of the red-
edge in response to plant stress and seasonal changes in chlorophyll
content (Merton&Huntington., 1999). RVSI is also positively correlated
with leaf biomass (Perry&Roberts, 2008). PSRI is sensitive to the ratio of
carotenoids and chlorophyll in leaves and tracks senescence-induced
degradation of chlorophyll (Merzlyak et al., 1999).

2.3.2. Canopy water and lignin indices
Green (live) vegetation reflectance in the 900 to 2500 nm region of

the spectrum is heavily influenced by water absorption bands.
Absorption features in the NIR, at 970 nm and 1240 nm, are particularly
useful for quantifyingvegetationwater content becauseabsorptiondoes
not saturate with increasing water concentration. Hyperspectral
research has shown that metrics based on NIR water-absorption
bands correlate with vegetation moisture content and structure of
canopy components (Dennison et al., 2003; Roberts et al., 2004; Serrano
et al., 2000).We explored twoNIRwater-absorption indices for biomass
estimation (Table 1):Water Band Index (WBI; Peñuelas et al., 1997) and
the Normalized Difference Water Index (NDWI; Gao, 1996), which
measure the 970-nm and 1240-nm water-absorption features, respec-
tively. These indices are not influenced by chlorophyll absorption, so
they are complementary to vegetation indices based on red absorption,
i.e., SR, NDVI, EVI (Gao, 1996).

Several other vegetation biochemicals, such as lignin and cellulose,
create absorption features across the SWIR region measured by
hyperspectral sensors (Curran, 1989; Elvidge, 1990). In this study we
explored the Normalized Difference Lignin Index (NDLI; Serrano et al.,
2002; Table 1). When tested with hyperspectral imagery from chaparral
communities in southernCalifornia, Serrano et al. (2002) found thatNDLI
was sensitive to both bulk canopy lignin and vegetation structure of
green continuous canopies, although the relationshipwas not significant
for senescing canopies or ecosystems with exposed soil (low leaf area).

2.3.3. Spectral mixture analysis
We estimated fractional abundance of green vegetation (GV), non-

photosynthetic vegetation (NPV) and shade spectral endmembers for
plot-scale spectra using spectral mixture analysis (SMA; Roberts et al.,
1993; reviewed in Keshava & Mustard, 2002). As opposed to
narrowband indices, SMA endmember fractions are modeled using
full-spectrum information (i.e., 161 bands, 437 to 2435 nm). Few
studies in tropical ecosystems have linked endmember fractions to
forest biophysical parameters, such as biomass. However, Hall et al.
(1995) showed that SMA shade and background fractionswere strongly
related to biomass, LAI, DBH and net primary productivity in boreal
conifer-dominated forests, while sunlit canopy fraction (e.g., GV) and
NDVI were not as predictive. In a comprehensive comparison of SMA
endmembers and 10 vegetation indices calculated from Landsat-
simulated imagery, the shadow fraction consistently outperformed
broad-band indices in estimating boreal forest biomass, leaf-area index
(LAI), NPP, DBH, stem density, and basal fraction (Peddle et al., 2001).
Studies fromnon-forest sites have employed hyperspectral data in their
analyses of vegetation biophysical parameters (Asner & Lobell, 2000;
McGwire et al., 2000; Sonnentag et al., 2007). In estimating percent
green cover in an arid environment, McGwire et al. (2000) showed that
theGVendmember fractionmodeled10%more variance than thebest of
several broad-band and narrow-band vegetation indices.

Details of our SMA method are described in Clark, 2005 (Chapter 4)
and are summarized below. A GV endmember was selected by plotting
selected crown pixels in a red vs. NIR scatter plot. Thirteen pixels with
relatively low red and high NIR were averaged to form one GV image
endmember, andnine pixelswith high red and lowNIRwere averaged to
form one NPV image endmember. The NPV image spectrum was a
mixture of spectral properties from NPV (e.g., bark) and GV (e.g., tree
leaves, canopy epiphytes, and moss) measured within the sensor's
instantaneous field of view (IFOV). We used a photometric shade
endmemberwith a uniform reflectance of zero. A library of 102 field and
laboratory spectrawas included in the analysis to allow the selection of a
purer NPV endmember spectrum. An NPV endmember was selected
from the library using the criteria that it yield a low model root-mean-
square error (RMSE) and provide physically reasonable fractions when
combined with the image GV endmember to unmix the image NPV
endmember (Roberts et al., 1993). The final NPV reference endmember
ultimately selected was from a tree trunk spectrum acquired in the field
at La Selva. The GV, NPV and shade endmembers were then applied in a
SMA to plot-level hyperspectral data (Section 2.3), producing fractional
abundance of each endmember for each plot.
2.4. Statistical analyses

Weused regression analyses to relate plot-scale lidar and hyperspec-
tral metrics to field-derived biomass from all plots and plantation plots
only. There were 83 plots located within the lidar DCM, while only 39 of
these plots were in the hyperspectral imagery; thus there were 39 total
samples (15 were plantation) for regression models with hyperspectral
metrics or lidar combined with hyperspectral metrics (Table 2).

Ordinary least squares (OLS) regression assumes that error
residuals from the model are not autocorrelated. Field plot centroids
(i.e., centers) were located an average 1500 m and maximum 3670 m
apart, yet theminimum inter-plot distance was 14 m; therefore, some
residuals could be spatially autocorrelated at short distances (Cressie,
1993). There are several examples of autocorrelated error in our lidar
and hyperspectral datasets, including spatial variation in georeferen-
cing accuracy of imagery and field plots, changing atmospheric
conditions and radiometric calibration alongflight lines, and differences
in ground retrieval accuracy, and subsequent vegetation height
estimation, across land-cover types (Clark et al., 2004). Toaccommodate
residual autocorrelation, we used a form of generalized least squares
(GLS) regression that weights residuals based on an error variance–
covariance matrix. The residual covariance is estimated by passing the
spatial distance between sample pairs through a modeled spatial
covariance function (e.g., a model variogram). Methods followed those
in Lark (2000) and Lark and Cullis (2004) andwere automatedwith the
R statistical software v2.9.0 (R Development Core Team, 2005 and its
geoR v1.6-25 (Ribeiro & Diggle, 2001) and nlme v3.1-91 packages
(Pinheiro & Bates, 2000). Single-predictor GLS regression proceeded as
follows: 1) a remote sensing metric (e.g., MeanHgt and NDVI) was
regressed against biomass using OLS regression; 2) an empirical
variogram was calculated from the OLS residuals, with plot centroids
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serving as x,y point coordinates and the maximum variogram lag
distance set at 2/3 of the greatest distance between plot centroids; 3)
initial model residual variogram parameters were set to: range equal to
the maximum lag distance, sill equal to semivariance at the range, and
the nugget equal to 1/2 the lowest semivariance; 4) the residual
variogram range, sill and nugget parameters were then re-estimated
using the variofit function in geoR; and 5) remote sensing metrics were
then GLS regressed against biomass using the gls function in the nlme
package. In the gls function, the OLS residual variogram parameters
were used only as initial states, as they are biased (Cressie, 1993). These
spatial covariance parameters were re-estimated simultaneously with
regression-model fixed effects using the Residual Maximum Likelihood
(REML) method and simulated annealing optimization (Lark & Cullis,
2004). Steps 4 and 5 were performed separately with a Spherical and
Exponential spatial covariance function, and the best function was
determined based on the overall GLS regression r2 value and whether
the REML-estimated range was less than the maximum distance
between plot centroids. If both Spherical and Exponential range
estimates were too large, then only the OLS regression results were
reported. The covariance function selected was used in a leave-one-out
cross validation of samples to establish a root-mean-square error
(RMSE) for the regression model. This cross validation approach was
also used to calculate RMSE for the associated OLS regression model.

The GLS procedure described above was also performed for every
combination of two predictormetrics (e.g., multiple regression). All GLS
regressionmodelswere also testedwith a square root (SQRT) transform
applied to biomass. In this case, the model RMSE was reported in the
original biomass units Mg/ha (not square root). The best three GLS
models were ranked, in order: 1) valid range parameter, 2) high r2, and
3) low RMSE. Parameters for the starting OLS model of the selected GLS
models were also reported.

2.5. Mapping biomass

Tomap biomass across the landscapewith lidarmetrics, we overlaid
a 30×30-mgrid over theDCM. Each grid cellwas thus the same size as a
CARBONO subplot and contained 8100 0.33-mDCMvegetation heights.
Lidar metrics were calculated from DCM heights in each 30×30-m cell.
We then applied to each grid cell the best GLS regression model with
lidar metrics and all plots.
Table 3
One- and two-variable regressionmodels to estimate aboveground biomass from lidarmetric
squares (g) regression models. Structure, nugget and range (in meters) are residual-variog

Rank Transa X1 X2 r2(o) RMSE(o)b r2(g) RM

Lidar metrics — all plots located on FLIMAP image (n=83)
One predictor variable

1 Sqrt MeanHgt – 0.89 40.3 0.88 38
2 Sqrt Mean95pct – 0.87 43.5 0.87 43
3 Sqrt MedianHgt – 0.87 43.6 0.86 41

Two predictor variables
1 Sqrt MeanHgt MaxHgt 0.90 39.3 0.90 38
2 Sqrt MeanHgt MedianHgt 0.90 39.5 0.89 38
3 Sqrt MeanHgt StdDevHgt 0.90 40.1 0.89 38

Lidar metrics — all plots located on both FLIMAP and HYDICE images (n=39)
One predictor variable

1 Sqrt Mean95pct – 0.91 36.0 0.91 35
2 Sqrt MeanHgt – 0.89 39.0 0.88 37
3 Sqrt MedianHgt – 0.88 41.2 0.86 39

Two predictor variables
1 Sqrt Mean95pct StdDevHgt 0.93 33.7 0.92 33
2 Sqrt MeanHgt Mean95pct 0.92 34.5 0.92 34
3 Sqrt Mean95pct MedianHgt 0.92 35.6 0.91 35

a Sqrt = square-root transformation of biomass.
b RMSE=root mean-squared error in biomass units, Mg/Ha, including for Sqrt models.
c Correlation structure of residuals, Sph = Spherical or Exp = Exponential.
3. Results

3.1. Field-measured biomass

Estimates of biomass from field plot data ranged from 0.04 to
278.9 Mg/ha (Table 2). Old-growth forest plots tended to have more
biomass than plantations (average). Old-growth forest biomass was
more variable thanplantations in termsof standarddeviation; however,
the coefficient of variation (c.v.) is considerably lower in old-growth
forest compared to plantations (31% vs. 108%). The high c.v. among
plantations undoubtedly reflects the mix of ages (1 to 6 years) and
species composition they comprised. Within a forest type, plantations
are more variable in percentage terms, but not in absolute biomass
terms, since the average biomass of old growth is over five times higher.

Plantation plots were highly dynamic, with trees undergoing rapid
growth. The HUERTOS field data used for biomass estimation were
measured 72–111 days before the lidar acquisition in September, 1997
(Section 2.1.3), while theywere 269–308 days before the hyperspectral
data acquisition in March, 1998. When compared to a May–June,1998
census, the annual growth in biomass was on average 9.8±6.4 Mg/ha
(maximum=16.7 Mg/ha).We thusexpect that ourfield-based biomass
values from plantation plots (except 1-yr rotation plots) are lower than
values from plots measured at the same time as the hyperspectral and
lidar flights. Nine plots had annual harvesting and replanting shortly
after theMay–June 1997 inventory. For these plots, field biomass values
were likely too high aswematched peak biomass, measured in the field
immediately prior to harvest, to remote sensing data acquired when
biomass was recovering after harvest.

3.2. Estimation of biomass — all plots

Estimation of biomass with lidar was performed using all plots
available in FLIMAP imagery and with all plots that were also located
within the HYDICE and FLIMAP images. The best single-variable GLS
regression model from all 83 plots on FLIMAP was using MeanHgt and
the square-root of biomass, SqrtBiomass (Table 3, Fig. 3: r2=0.88;
RMSE=38.6 Mg/ha). The OLS regression model had a slightly stronger
r2 of 0.89, yet its RMSE was 1.7 Mg/ha higher than the GLS model. This
trend of 0.01 lower r2 with slightly lower RMSE for GLS relative to OLS
regression was a consistent pattern for all lidar models (Table 3).
s. All model parameters are for ordinary least-squares (o) followed by generalized least-
ram model parameters for generalized least-squares regression.

SEb(g) Intercept Slope X1 Slope X2 Strc Nugget Range

.6 1.14/2.17 0.55/0.51 – Sph 0.38 510.7

.2 0.86/1.26 0.37/0.36 – Sph 0.91 1489.2

.0 1.32/2.60 0.52/0.47 – Exp 0.43 387.1

.3 0.72/1.54 0.43/0.44 0.08/0.06 Sph 0.39 748.0

.0 1.05/2.00 1.30/0.88 –0.72/–0.35 Exp 0.51 496.4

.7 1.01/1.81 0.49/0.49 0.20/0.10 Exp 0.35 279.8

.8 0.57/0.23 0.38/0.39 – Sph 0.35 266.0

.2 1.22/2.17 0.52/0.49 – Exp 0.39 1050.0

.3 1.40/2.34 0.48/0.46 – Exp 0.21 152.9

.2 0.54/0.48 0.49/0.50 –0.52/–0.51 Exp 0.36 325.1

.3 0.65/0.58 0.21/0.24 0.23/0.22 Sph 0.28 320.8

.5 0.64/0.53 0.27/0.25 0.14/0.19 Sph 0.38 384.6



Fig. 3. Best single-variable model for estimating biomass from lidar metrics. Predictor
variable is plot mean height (MeanHgt) and the response is the square-root of plot-
level biomass. Models are for ordinary (OLS) least-squares and general least-squares
(GLS) regression.

Fig. 4. Relationship between the normalized difference lignin index (NDLI) and plot-
level biomass (square-root).
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Accounting for autocorrelation in residuals from plot proximity
appeared to strengthen models by reducing overall error.

Regression models with two lidar metrics all had MeanHgt and the
addition of MaxHgt, MedianHgt or StdDevHgt (Table 3, n=83). Relative
to the single-variable model with MeanHgt, the addition of MaxHgt
improved the GLS r2 from 0.88 to 0.90, yet the RMSE only improved by
0.3 Mg/ha.

When considering the 39 plots on both the lidar and hyperspectral
images, the best single-variable GLS model used Mean95pct and had a
slightly improved fit (r2=0.91 and RMSE=35.8 Mg/ha) relative to the
best 83-plot model (Table 3). Models from 39 plots are presented for
comparison with hyperspectral analysis; however, we consider the
models from83plotsmore robust since they have twice the sample size.

Single-variable models using hyperspectral metrics had r2 values
that ranged from0.36 to 0.49withNDLI andPSRI aspredictors (Table 4).
Fig. 4 shows the relationship betweenNDLI and SqrtBiomass,whichwas
the bestmodel with a single hyperspectralmetric. The best two-variable
models had r2 values from0.57 to 0.68 andRMSE from64.4 to71.3 Mg/ha,
withWBI andEVI aspredictors in thebestmodel. Aswith lidarmodels, the
square-root of biomass tended to improve the linear fit.

Models that used a lidar and hyperspectral metric had no
improvement over models with 2 lidar metrics, with r2 values of 0.91
and RMSE from 35.4 to 36.6 Mg/ha (Table 5). The top three GLSmodels
used the Mean95pct lidar metric in combination with the PSRI, SR or
WBI hyperspectral metrics.
Table 4
One- and two-variable regression models to estimate aboveground biomass from hypersp
squares regression, so all model parameters are for ordinary least-square regression (o).

Rank Transforma X1 X2 r2(o)

Hyperspectral metrics — all plots located on both FLIMAP and HYDICE images (n=39)
One predictor variable

1 Sqrt NDLI – 0.49
2 Sqrt PSRI – 0.40
3 None NDLI – 0.36

Two predictor variables
1 Sqrt WBI EVI 0.68
2 Sqrt GV WBI 0.68
3 Sqrt WBI NDVI 0.57

a None = no transformation of biomass; Sqrt = square-root transformation of biomass.
b RMSE=root mean-squared error in biomass units, Mg/Ha, including for Sqrt models.
3.3. Estimation of biomass — plantation plots only

Table 6 shows the top plantation models, similar to Rank 1 in
Tables 3–5, but only considering plantation plots. Note that OLS
regression was used because there were fewer plots to fit the necessary
GLS regression parameters. As with the analysis with all plots, MeanHgt
was the best single variable for estimating plantation biomass, and the
model was stronger (Fig. 5: r2=0.95; n=32) thanwhen using all plots
(Fig. 3: r2=0.89; n=83). In contrast, the MeanHgt model was weaker
when limited to old-growth plots (Fig. 5: r2=0.43; n=51). The overall
MeanHgt model, which covers the full range of La Selva forest biomass
from plantations to old-growth, was thus heavily dependent upon the
lower biomass plantation plots to provide an accurate fit.

There were only 15 plots available for assessing combined lidar
and hyperspectral metrics for plantation biomass. For hyperspectral
metrics, EVI was the best single predictor, while GV and NDWI were
important for a two-variable model (Table 6). The best two-variable
model with lidar metrics had a high r2 of 0.98 and low RMSE of
8.1 Mg/ha (n=15). The best model with a lidar and hyperspectral
metric had the same r2, with slightly 0.6 Mg/ha RMSE.

4. Discussion

4.1. Comparison of lidar and hyperspectral metrics for estimating biomass

For the lidar and hyperspectral metrics analyzed in this study, those
derived from lidar vegetation height (i.e., DCM) were the strongest
predictors of biomass. The mean plot height metric (MeanHgt) had the
ectral metrics. Residual correlation structure could not be estimated for general least-

RMSE(o)b Intercept Slope X1 Slope X2

72.5 −9.48 446.66 –

77.2 13.16 −70.81 –

70.3 −166.95 6635.99 –

64.4 40.27 −38.14 167.20
66.3 46.46 0.03 −41.02
71.3 7.62 −26.59 38.29

image of Fig.�3
image of Fig.�4


Table 5
Two-variable regression models to estimate aboveground biomass from lidar and hyperspectral metrics. All model parameters are for ordinary least-squares (o) followed by
generalized least-squares (g) regression models. Structure, nugget and range (in meters) are residual-variogram model parameters for generalized least-squares regression.

Rank Transa X1 X2 r2(o) RMSE(o)b r2(g) RMSE(g)b Intercept Slope X1 Slope X2 Strc Nugget Range

Lidar+hyperspectral metrics — all plots located on both FLIMAP and HYDICE images (n=39)
1 Sqrt Mean95pct PSRI 0.91 35.8 0.91 35.4 1.39/1.02 0.36/0.37 −8.14/−4.98 Sph 0.18 135.6
2 Sqrt Mean95pct SR 0.92 36.2 0.91 35.6 −0.34/0.10 0.37/0.37 0.07/0.07 Sph 0.17 1907.9
3 Sqrt Mean95pct WBI 0.91 36.9 0.91 36.5 −1.42/−4.47 0.38/0.39 1.58/4.30 Sph 0.28 271.6

a Sqrt = square-root transformation of biomass.
b RMSE=root mean-squared error in biomass units, Mg/Ha, including for Sqrt models.
c Correlation structure of residuals, Sph = Spherical or Exp = Exponential.
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best model when regressed against the square-root of biomass
(SqrtBiomass). The linear fit between SqrtBiomass and MeanHgt was
strongerwith plantation plots thanwith old-growth plots,which can be
attributed to several factors. Plantations have an even-aged tree
structure, which yields less variation in stem height and density for a
given level of plot biomass. Lidar-derived canopyheight (DCM)wasalso
more accurately estimated for plantations than old-growth forest (Clark
et al., 2004). In contrast, old-growth stands have more variability in
stem height and density within plots and less accurate lidar-derived
heights (Clark et al., 2004). These factors translate into less variable lidar
heightswithin a plot (Fig. 2—plantation) and less variation inplotmean
lidar height for plantation biomass values (Fig. 4). There were also
important differences in when and how field biomass was measured.
Individual tree biomass in plantations was calculated from relatively
accurate species-level allometric equations, although data were from
3 months prior to the lidar flight. Old-growth and parkland forest plot
biomass was estimated from a less accurate, generalized allometric
equation (Eq. 1), and the8parklandplots hadbiomassmeasured4 years
prior to the lidarflight. Thus, relatively lowvariation inmeanplot height
for levels of biomass, coupled with more accurate biomass field
measurements, is expected to strengthen the linearmodel for plantation
samples and reduce RMSE (Fig. 5 — plantation). Old-growth forest
structure is spatially autocorrelated at relatively short distances (Clark
et al., 1996), which means that a slight spatial mismatch between field
and lidar plot locations could cause relatively large errors in connecting
estimates of mean canopy height to biomass values. All of these factors
are expected to cause more variable lidar mean height for similar levels
of biomass in old-growth forest, and larger model RMSE (Fig. 4 — old-
growth forest).

In terms of variance explained, our MeanHgt biomass model (all
plots) from small-footprint, discrete-return lidar was similar to the
large-footprint, waveform-based (LVIS) model in Drake et al. (2002),
also from La Selva (r2=0.88, FLIMAP vs. r2=0.89, LVIS). However, the
RMS error was lower with the LVIS model (22.5 Mg/ha) than with
FLIMAP model (38.6 Mg/ha). Drake and colleagues used the average
Table 6
Plantation plots only: top regression models to estimate aboveground biomass from lidar
biomass.

Sensors X1 X2 r2

Plantation plots located on FLIMAP image (n=32)
Lidar MeanHgt – 0.95
Lidar MeanHgt Skewness 0.96

Plantation plots located on both FLIMAP and HYDICE images (n=15)
One predictor variable

Lidar MeanHgt – 0.96
Hyper EVI – 0.64

Two predictor variables
Lidar Mean95pct StdDevHgt 0.98
Hyper GV NDWI 0.78
Lidar+Hyper MeanHgt RVSI 0.98

a RMSE=root mean-squared error in biomass units, Mg/Ha.
HOME value from footprints found entirely in field plots, while our
study used mean of estimated vegetation height from 0.33 m cells
covering the whole plot. The Drake et al. model included 34 plots that
ranged in size from 0.05 to 0.5 ha, while our model used 83 plots with
less range in size (0.04 to 0.12 ha). The lower spread of error in the
Drake et al. model is most likely explained by their use of relatively
large old-growth forest plots (n=18, 0.5 ha), while our old-growth
plots were much smaller and numerous (n=43, 0.09 ha). In old-
growth forests, large plots should smooth the spatial variability in
both field-measured biomass and lidar heights at short distances,
thereby reducing residual error in the model at higher biomass levels.

When considering the full range of biomass (all plots), the best
model with two lidar metrics included MeanHgt andMaxHgt and was
slightly better than the model using only MeanHgt (r2=0.90 two
variables vs. r2=0.88 one variable). We used the MeanHgt–MaxHgt
model to map biomass, which revealed detailed variation across the
landscape (Fig. 6). The northern part of La Selva has a mix of
plantations and abandoned pastures, with relatively low biomass
values (Fig. 6A). Thewestern side of themap covers a secondary forest
with moderate values (Fig. 6B). The old-growth forest covers most of
the lidar dataset (Fig. 6C). Biomass values are relatively high, but there
are areas with low biomass in large canopy gaps in areas with swamps
and large tree falls. Some north–south streaks are evident where there
were no lidar returns, so the DCM had artificially low heights (see
Clark et al., 2004).

These results using lidarmetrics are encouraging as themetrics are
relatively simple to compute from lidar-derived vegetation height,
whether from raster DCMs or the lidar xyz point cloud. A challenge to
using lidar sensors over tropical rain forests is retrieving ground
returns from the original lidar xyz point cloud or derived raster
surface, which is a prerequisite to calculating accurate vegetation
heights (Clark et al., 2004). Dense canopy and understory vegetation
in tropical rain forests makes retrieving lidar returns from bare
ground difficult, especially with the first discrete-return type sensor
used in this study (Clark et al., 2004). There are now commercial lidar
and hyperspectral metrics. All models are with OLS regression, Sqrt transformation of

RMSEa Intercept Slope X1 Slope X2

11.1 0.48 0.55 –

10.8 0.31 0.60 0.16

11.5 0.48 0.55 –

22.7 −1.88 83.21 –

8.1 0.42 0.73 −1.75
20.2 −5.09 0.03 −42.55
8.7 −0.09 0.47 79.56



Fig. 5. Ordinary least-squares regression model for estimating plot-level biomass
(square-root) from lidar-derived plot mean height (MeanHgt), for plots in plantations
and managed parkland/old-growth forest.
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sensors that record multiple discrete returns, which typically include
a last return and have relatively high point density. These sensors will
undoubtedly make ground-retrieval in tropical rain forests more
accurate. Improvements in ground-retrieval should strengthen bio-
mass estimation models by reducing RMSE. Further experiments
should analyze the optimal lidar footprint size and density to adequately
retrieve the ground, derive canopyheights, and the subsequent sensitivity
of biomass estimates to these parameters.

We found that hyperspectral metrics provided lower accuracy in
estimating biomass than lidar metrics, whether with all plots or with
the more accurate plantation plots. Models with two hyperspectral
metrics performed slightly better thanmodels with one hyperspectral
metric, although even these models had poorer performance than
models with single lidar metrics. Furthermore, the best model with a
single lidar and hyperspectral metric was no better than the best
model using two lidarmetrics, with either all plots or plantations only.
For our remote sensing datasets, suite of metrics and tropical rain
forest site, hyperspectral data did not improve biomass estimation
models, and so these data were not worth the additional cost and time
needed for acquisition and processing.

Although they did not improve biomass estimation, the hyper-
spectral metrics selected in the regression models were a mix of
indices that track green vegetation and structure (i.e., SR, NDVI, EVI,
and GV), canopy water (WBI and NDWI), leaf and fruit senescence
(PSRI) and lignin concentrations (NDLI). The NDLI was the best
hyperspectral metric for single-variable models using all plots, with
NDLI values increasing sharply with biomass (Fig. 4). However, the
linear relationship was heavily influenced by the 4 lowest biomass
plots. These plots were from plantations with a 1-yr harvest cycle. The
two lowest biomass plots also had the lowest NDLI values near 0.02
(Fig. 4), while the other two plots had slightly higher NDLI of 0.032
and 0.036. Harvest was conducted after biomass was measured in the
field, making the relationship between lidar and hyperspectral
metrics at this low end of biomass suspect. When the 2 lowest
biomass plots were removed from the regression model, the model r2

dropped from 0.49 to 0.26. Since the NDLI model is not robust without
these low biomass plots, we do not discuss it further.

4.2. Leaf phenology and metric variability

An important consideration in these analyses is tree phenology,
especially leaf senescence. Several species of canopy trees in old-
growth forest were shedding leaves or leafless at the time of the
hyperspectral flight in March, while more tree species had leaves
when the FLI-MAP data were acquired in September (Frankie et al.,
1974). Trunks and branches of large canopy trees are the dominant
components of forest biomass, and tree-level biomass is typically
estimated from general equations based on stem diameter without
considering leaf phenology. However, leaf phenology causes temporal
variation in hyperspectral and lidar metrics even though plot biomass
remains relatively stable throughout the year; and thus, relationships
between metrics and biomass will change depending on the time of
year that the sensors are flown.

If our lidar sensor had been flown when there was a greater
percentage of leafless trees in the canopy (i.e., January through
March), and we assume that ground retrieval accuracy remains
constant, we would expect more canopy lidar returns from deeper in
the canopy and lower values for MeanHgt, MedianHgt and MedMax
and increasing values of StdDevHgt. Plot-scale metrics such as
MaxHgt and Mean95pct height should be less affected by leaf
phenology because large branches continue to cause upper-canopy
returns when trees are leafless, especially with a lidar sensor offering
high point density (Brandtberg et al., 2003; Clark, 2007). Future
research should investigate how the lidar–biomass relationship varies
with levels of canopy deciduousness and point density (Drake et al.,
2003).

Tree leaf phenology is also an important consideration with
hyperspectral metrics. First, a decrease in canopy leaves, or LAI,
changes the fractional spectral mixture of an individual species'
leaves, bark, fruits and flowers, understory vegetation and soil, and
canopy lianas (vines), moss and lichen, within the sensor instanta-
neous field of view (IFOV). For example, chlorophyll and NIR water
absorption features from green leaves are expressed more deeply in
the photon scattering environment provided by high LAI canopies
(Asner, 1998). In contrast, SWIR absorptions from protein, nitrogen,
starch, lignin, cellulose, and sugars (Curran, 1989; Elvidge, 1990) are
typically obscured by heavy water absorption in high LAI canopies.
Thus, as an old-growth tropical forest enters a season with a relatively
high fractional cover of senescing leaves or exposed branches in the
canopy, we would expect chlorophyll and water absorption metrics
(e.g., EVI and WBI) to decrease and SWIR absorption metrics (e.g.,
NDLI) to increase, while biomass remains relatively stable.

In fusing hyperspectral and lidar data for biomass estimation, one
of the best uses of the hyperspectral information may be to adjust the
lidar predictive models for species or canopy state (Anderson et al.,
2008; Swatantran et al., in press). For species-rich continental tropical
rain forests, it is currently unrealistic to classify all canopy tree species
from hyperspectral data (Clark et al., 2005), nor do we have a wide
range of allometric biomass equations for tropical species. However,
there is potential to map the fractional cover of canopy senescence or
deciduousness, perhaps through a metric such as NPV (Bohlman,
2008). This type of analysis was not possible with our lidar and
hyperspectral datasets as they were flown at two different seasons,
with large differences in canopy phenology. However, this analysis

image of Fig.�5


Fig. 6. Estimated aboveground biomass (Mg/Ha) across the La Selva landscape, which includes A. abandoned pastures, B. plantations, C. secondary forests, and D. old-growth forests.
Inset is the histogram from all 8299 30×30 m cells in the biomass map.
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would be possible with simultaneous (or nearly so) acquisition of
lidar and hyperspectral data, such as that provided by the Carnegie
Airborne Observatory (Asner et al., 2007; Asner et al., 2008b).

5. Conclusion

The goal of this study was to assess small-footprint lidar and
hyperspectral metrics for estimating aboveground biomass over a
tropical rain forest landscape. Relatively simple lidar metrics derived
from canopy heights within plots, such as mean height, had an
impressive capacity to estimate biomass over a range of values. This
study supports conclusions from studies at this and other climate
zones that lidar is a premier instrument for mapping biomass (i.e.,
carbon stocks) across broad spatial scales (Anderson et al., 2008;
Drake et al., 2002, 2003; Swatantran et al., in press). In agreement
with conclusions by Swatantran et al. (in press) for a temperature
forest site, hyperspectral metrics provided no additional benefit for
estimating biomass in our tropical rain forest landscape.

Ultimately, a spaceborne system will be needed to map carbon
stocks and flux at the broad spatial scales needed to support global
carbon-emission regulation (Houghton, 2005; Rosenqvist et al.,
2003). We suggest that future work in tropical forests should explore
the sensitivity of lidar metrics to canopy-level leaf phenology, which
varies throughout the year, and improving ground-retrieval accuracy.
Newer lidar sensors that can sample at high point densities and record
last discrete returns will help resolve these research questions.
Hyperspectral sensors may be best suited for adjusting lidar-based
biomass estimation equations for vegetation phenology or stress, as
long as the sensors are flown simultaneously or close in time. Well-
calibrated hyperspectral sensors, covering the full range of wave-
lengths from visible to shortwave-infrared energy, can take advantage
of biochemical absorption properties that are expressed with varying
levels of canopy LAI due to stress or seasonality. Taken together,
airborne lidar and hyperspectral sensors will play an important role in
determining sensor parameters for future spaceborne sensors.
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