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 Accurate estimates of aboveground biomass provide critical information 

for modeling carbon dynamics in terrestrial ecosystems. Although aboveground 

biomass is difficult to quantify over large areas using traditional techniques, 

large-footprint lidar remote sensing holds great promise for biomass estimation 

because vertical forest structure is directly sampled.  Large-footprint lidar 

remote sensing techniques have proven successful in accurately estimating 

forest structural characteristics such as biomass in a variety of temperate 

forests, however they remained untested in dense, closed-canopy tropical 

forest ecosystems that contain a large portion of the carbon found in the 

terrestrial vegetation globally.  

 The first stage of this research developed relationships between metrics 

from an airborne scanning lidar instrument and forest structural characteristics 

in a tropical rainforest in Costa Rica. Lidar metrics were strongly correlated with 

aboveground biomass, basal area and mean stem diameter through a 



successional spectrum of conditions sampled from recently abandoned pasture 

to primary tropical forest. 

 The second stage of this research explored the sensitivity of lidar to 

differences in canopy structure and aboveground biomass at the Costa Rican 

rainforest. Vertical canopy profiles were developed from field measurements as 

a basis of comparison with lidar-derived profiles. Metrics from field profiles were 

highly correlated with both aboveground biomass and corresponding lidar 

profile metrics. As a result, lidar profile metrics were also highly correlated with 

aboveground biomass through the entire range of conditions sampled in this 

Neotropical landscape.  

 The final stage examined the generality of relationships between lidar 

metrics and aboveground biomass at two study areas in Central America with 

different average annual precipitation levels. Lidar metrics were strong 

predictors of basal area and mean stem diameter at both study areas, however 

the relationships were significantly different at the two study areas until the 

deciduousness of canopy trees in Panama was considered. Lidar metrics and 

aboveground biomass were also strongly correlated, however, relationships 

remained significantly different between the two study areas primarily due to the 

different general allometric relationships used to estimate aboveground 

biomass in tropical wet forests and tropical moist forests. This demonstrates 

that lidar remote sensing should greatly aid efforts to quantify aboveground 

biomass in terrestrial vegetation globally.  
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Chapter 1.  Introduction and Background 

 

Tropical forests are among the most structurally complex and carbon-rich 

ecosystems in the world (Dixon et al. 1994, Richards 1996). The way that 

carbon cycles through these dynamic systems is of interest at local  (e.g., 

landscape-level respiration of woody plants, forest turnover) and global (e.g., 

deforestation and aforestation of tropical areas) scales. Knowledge of the total 

carbon content in tropical vegetation provides a crucial initial condition or 

baseline for studies that examine carbon flux caused by natural and 

anthropogenic processes.  

Field studies typically use biomass (which is approximately 50 percent 

carbon) as a surrogate for the total carbon that is within terrestrial vegetation. 

Although field biomass estimation methods are useful for local-scale studies, 

the total area covered by these studies is small, and many of the field plots are 

biased in their placement (Brown 1997). This significantly hampers efforts to 

extrapolate field results over heterogeneous areas of landscapes that were not 

sampled. In addition, the cost to repeatedly sample field plots is high, which 

therefore limits the ability to conduct long-term studies over large areas. 

As a result, remote sensing techniques are necessary for the 

measurement of biomass over broad spatial scales. Unfortunately, many types 

of remote sensing instruments suffer from the same problem: they are sensitive 

to changes in biomass in relatively young and/or homogeneous forests, but are 

unaffected by changes in biomass in older or heterogeneous forests (e.g., 

Luckman et al. 1997, Steininger 2000). As a result, remote sensing techniques 
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have not been successful in estimating biomass in dense closed-canopy 

tropical forests.  

Lidar instruments, or laser altimeters, may be able to overcome some of 

the limitations of other remote sensing instruments in forest biomass estimation. 

These instruments have been used to accurately estimate canopy height in a 

variety of different forest types. As a result, lidar instruments reliably provide an 

important biophysical characteristic that can then be used to estimate changes 

in carbon or biomass in forest areas.  

In addition to canopy height, new large-footprint, full-digitization lidar 

instruments also provide data related to the vertical arrangement of forest 

structure from the top of the canopy to the ground. This data can also be used 

to improve the prediction of biomass, and to estimate the vertical distribution of 

forest structure such as vertical foliar profiles (Lefsky et al. 1999a, Harding et al. 

2001). As such, lidar instruments provide a wealth of data potentially suited for 

estimation of biomass in forest ecosystems.  

Although large-footprint lidar instruments have proven useful for 

aboveground biomass estimation in temperate forest environments (Lefsky et 

al. 1999b, Means et al. 1999), they remain untested in dense, carbon-rich 

tropical forests. As a result, new empirical relationships between traditional 

forestry measurements or estimates of forest structure, and metrics from lidar 

waveforms that may relate to vertical canopy structure must be developed. The 

generality of the relationships between lidar metrics and forest structure also 

must be explored in tropical regions with different climatic conditions. If lidar 

metrics are significantly correlated with tropical forest biomass in different 
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tropical areas then space-borne lidar instruments may be effective for global 

biomass estimation.   

In this chapter I first discuss the importance of estimating the carbon and 

biomass content of tropical forest ecosystems. Second, I review different 

techniques for estimating forest biomass, and attempt to illustrate areas where 

existing techniques are inadequate or remain untested. Finally, I present 

research questions pertaining to the use of large-footprint lidar instruments for 

aboveground biomass estimation in closed canopy tropical forests. These 

research questions are then addressed in the subsequent chapters.         

 

Why is Biomass Important? 

Biomass is the total amount of biological materials in a given area at a 

given time. It is usually expressed in either live or dry weight, for example 

kilograms of biological material per hectare (kg/ha). Biomass is rarely directly 

measured, and is instead generally estimated through allometric relationships. 

As a result, I will typically use “estimated aboveground biomass“ (EAGB) to 

refer to the estimated total, oven-dried aboveground biomass of a tree or 

forested area. This will then be a composite of both foliage and woody biomass 

of a given tree or forested area. EAGB is important in several different ways, 

some of which are listed below.     

 

Need for Accurate Estimation of Terrestrial Carbon Pools  

To more fully explain the degree to which human activity may contribute to 

global climate change it is necessary to clarify elements of the global carbon 



 4

cycle (GCC). There are still many uncertainties related to the different portions 

of the GCC, for example pertaining to the magnitude of carbon pools and 

fluxes, or transitions, between pools (Smith et al. 1993, Sundquist 1993, Gifford 

1994, Kolchugina and Vinson 1995, Gaston et al. 1998, Falkowski et al. 2000).  

Although the entire terrestrial carbon pool represents only a fraction of 

the oceanic carbon pool, the annual flow between the atmosphere and the 

terrestrial surface is on the same order as the ocean-atmosphere flow (Tans et 

al. 1990, Smith et al. 1993). Despite their relative importance in the GCC, 

however, terrestrial carbon pools and fluxes are poorly understood, primarily 

because of the difficulties associated with estimating the carbon content in 

terrestrial vegetation (Gifford 1994, Gaston et al. 1998, Potter 1999, Falkowski 

et al. 2000). These uncertainties limit modeling efforts to link the terrestrial 

carbon pool to other components of the GCC (Smith et al. 1993) and may 

undermine major global policy decisions (e.g., management of carbon stocks) 

that are based on these data (Tans et al. 1990, Dixon et al. 1994, Houghton 

1996, Steffen et al. 1998).  

Many of the difficulties in identifying the magnitude of terrestrial carbon 

pools arise from different estimation techniques. Broad-scale carbon modeling 

efforts often derive terrestrial carbon pool values from data for other portions of 

the GCC through inversion of atmospheric carbon transport models (e.g., Fan 

et al. 1998, Battle et al. 2000). However the reliability of this methodology has 

been questioned (Kaiser 1998, Holland and Brown 1999, Potter and Klooster 

1999b). Other methods attempt to use biomass estimates to quantify terrestrial 
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pools of carbon. Because biomass is largely (~50%) carbon, it serves as a 

useful predictor of the amount of carbon in terrestrial pools (Brown 1997).   

 

Forestry and Ecological Importance of Biomass 

Biomass represents the sum of all biological material in a given area, and is 

a critical component of many forestry and ecological applications. Biomass is 

also a direct indicator of the total yield from a particular forest stand. As such, 

foresters often try different management techniques to maximize total biomass. 

For example by harvesting plantations at different intervals they may identify an 

ideal time to harvest so as to maximize their return (Franklin et al. 1997). 

However, many forestry studies may only include commercially valuable 

species or merchantable timber in their biomass estimates.  

Biomass is also an important ecological parameter for describing the 

productivity and function of forest ecosystems (Spies 1997). The changes in 

biomass levels during a specified time interval (e.g. one year) help illustrate the 

productivity of the system. Here an important distinction is necessary. Most 

techniques estimate only the aboveground component of total biomass (i.e., 

EAGB), however, the total carbon fixed through photosynthesis after 

respiration, or net primary production (NPP), is allocated to both aboveground 

(e.g., branches and leaves) and belowground (e.g., fine and coarse roots) 

components. In many cases the belowground carbon content may equal or 

exceed the aboveground component. In addition, many studies also neglect to 

include the portion of total carbon allocated to materials lost during the 

measurement interval (e.g., to herbivores). So conclusions about productivity 
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based solely on changes to aboveground components may be missing 

important details (see Clark et al. 2001). However, because approximately 50% 

of biomass is carbon, accurate estimation of aboveground biomass levels is an 

important step in understanding terrestrial ecosystem carbon dynamics.  

Additionally, biomass is an indicator of how organisms partition or allocate 

their resources under different environmental conditions. At the global scale, 

differences in climate and the total and seasonal variation of incoming solar 

radiation help to explain biome-level variation in carbon allocation in plants. For 

example in many tropical environments where there is relatively low seasonal 

variation in incoming solar radiation, a high total incoming solar radiation, and a 

warm, wet climate the vegetation is under high competition for light. As a result, 

individual trees typically allocate a high proportion of carbon resources towards 

vertical growth and enlargement of crown area. At the local scale, these 

allocation strategies are further modified by topographic and soil conditions, as 

well as other environmental factors (Laurance et al. 1999, Clark and Clark 

2000). This leads to a hierarchical, heterogeneous distribution of carbon over 

tropical landscapes or regions. As a result, information pertaining to the spatial 

patterns of carbon allocation is important for a better understanding of 

vegetation-environmental interactions.     

 

Methods to Derive Biomass 

The only method to directly measure biomass is through destructive 

sampling of trees or entire forest stands, where all biological material is oven-

dried (to remove all water remaining in living tissues) and is then weighed. 
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Instead, most studies use allometric relationships to estimate biomass from a 

more easily measurable structural feature. To then convert a biomass estimate 

to carbon content one typically assumes that approximately 50% of biomass is 

carbon. This value is an approximation that may be more appropriate for some 

tree components (e.g., wood) than others (e.g., leaves).  

In traditional forestry studies the relationships are typically between a tree 

component, for example the stem diameter or height, and the aboveground 

biomass of the tree (Husch et al. 1982, Smith and Brand 1983). More recent 

attempts have also been made to relate forest biomass to remotely sensed 

data. In this case the interaction of the vegetation with electromagnetic radiation 

either from the sun (passive remote sensing) or the instrument itself (active 

remote sensing) is used to predict field estimated forest biomass. All of these 

methods are discussed below. 

 

Ground-based Approaches 

Methods for estimating biomass on the ground have primarily been 

developed in forestry and plant ecology studies. Although in some cases 

intensive destructive sampling and measurement of biomass and other tree 

parameters is performed (e.g., Whittaker and Woodwell 1968, 1969), this 

approach is expensive and time-consuming. When destructive techniques are 

utilized they are typically done in a manner so that allometric equations (e.g., 

Husch et al. 1982, Smith and Brand 1983, Cannell 1984, Niklas 1994a and b) 

can be developed to relate total oven-dry aboveground biomass to a particular 

tree (e.g., height or stem diameter at breast height) or forest stand structural 
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attribute (e.g., basal area or volume over bark). Allometric relationships can 

often be developed because the growth of different tree components (e.g., stem 

diameter) is related to the increase in the overall aboveground mass of the tree 

throughout the growth cycle (Figure 1.1). For example, as trees grow there is 

typically a geometric increase in biomass per tree with increases in diameter 

(Brown 1997).   

In field studies all stem diameters within a plot that are over a minimum size 

(e.g., 10 cm) are typically measured at breast height (1.37m) or, in the case of 

large tropical trees, above buttressing. The diameter measurements can then 

be used to derive tree biomass using an allometric equation that has been 

developed for that tree species or for trees within that type of forest ecosystem 

(e.g., the tropical wet forest equation in Brown 1997). The estimated tree-level 

aboveground biomass values are then generally summed for all measured trees 

within the plot. As a result, plot-level EAGB values have both a systematic error 

component related to components not included (e.g., trees with diameter < 10 

cm, shrubs, etc.), and a random error component related to measurement error 

(see Brown et al. 1995).        

Ground-based biomass estimation techniques differ greatly, and are often 

tailored for the specific need for the data (e.g., Cannell 1982, Smith and Brand 

1983, Cannell 1984, MacDicken 1997). In traditional ecological studies the 

intent is often to characterize local forest structure, therefore, the study sites are 

often not selected in an unbiased manner. In fact, the placement of plot 

locations is often biased by the investigators' perception of how an "ideal forest 

site” should appear (Brown et al. 1995, Brown 1997). Furthermore, the total  
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Time

Figure 1.1 Conceptual diagram of tree-level carbon allocation. As trees 

grow they allocate carbon to roots to increase absorption of water and 

nutrients, to crown components (e.g., branches, leaves) to increase the 

amount of carbon which can be fixed into photosynthate, and to stem 

components to increase the surface area available to transport water 

and nutrients. Allometric relationships relate the increase in total 

biomass (or aboveground biomass) of the tree to increases in the size 

of a component (e.g., stem diameter or height). Upper portion of figure 

is from Waring and Schlesinger (1985). 
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area sampled by ecological studies is miniscule. Less than 0.00001% of all 

tropical forest areas are estimated to have been sampled in field plots (Brown 

1997). These studies are effective for quantifying local-scale forest 

characteristics, but can lead to problems when used to make inferences about 

surrounding forested regions (Brown and Lugo 1992), and are of particular 

concern when they are applied globally (Olson et al. 1983).    

In addition to ecological studies there are national (e.g., US Forest Service 

Forest Inventory and Analysis, FIA project; Birdsey et al. 1997) and 

international (e.g., FAO FORIS; FAO 1995) forest inventory projects that 

provide EAGB values in forest areas. In many cases, plots in these national and 

international projects are located using a planned, stratified sampling design. 

These projects also typically include a large number of plots. Unfortunately, 

these inventories are relatively scarce in tropical regions (Brown 1997). In 

addition, there are often different methods used to conduct the inventories in 

different countries. As a result, current forest inventories are also not ideally 

suited for global scale forest aboveground biomass estimation.   

 A large and costly international forest inventory project would be required 

to obtain accurate estimates of global forest biomass using field techniques. 

The design of such an international project could resemble the FIA project used 

by the US Forest Service where a stratified sampling design is implemented 

globally. The plot network would also need to be resampled periodically through 

time, which would require enormous resources.  As a result, the ability to use 
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remotely sensed data to estimate global forest aboveground biomass is highly 

desirable.  

 

Passive Optical Remote Sensing of EAGB 

Multispectral data collected from airborne (e.g., Airborne Thematic Mapper 

or ATM) and spaceborne (e.g., Advanced Very High Resolution Radiometer or 

AVHRR) passive optical remote sensing instruments are generally used to 

predict forest EAGB in two ways. First, EAGB may be correlated with individual 

spectral reflectance bands (e.g., near infrared reflectance, middle infrared 

reflectance) or with spectral indices that incorporate two or more spectral bands 

(e.g., the normalized difference vegetation index or NDVI). Second, 

multispectral data may be incorporated into models to infer EAGB.  

While some studies have revealed correlation between vegetation 

indices (e.g., NDVI) and EAGB, this relationship appears to be primarily valid in 

non-forested areas (Hardisky et al. 1984, Shippert et al. 1995) or in relatively 

open canopy forests (Running et al. 1986). Other studies (e.g., Sader et al. 

1989, Anderson et al. 1993) have shown that there is little or no relationship 

between NDVI and EAGB in more densely forested regions. Therefore, in some 

cases passive optical data from tropical regions has instead been used to 

discriminate between recently cleared and older regenerating rainforest (e.g., 

Sader et al. 1989, Foody et al. 1996, Kimes et al. 1998, Nelson et al. 2000).  

This approach to estimate forest EAGB is difficult because spectral indicies 

(e.g., NDVI) from passive optical sensors are sensitive to changes in leaf area 
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index, or LAI, (Wickland 1991) which may reach an asymptote within 10 years 

after pastures are abandoned in tropical areas (Brown and Lugo 1990).  

Other authors have attempted to estimate forest EAGB using a single 

spectral band. For example, near infrared reflectance (NIR) was shown to be 

correlated with EAGB in pine plantations (Danson and Curran 1993) and middle 

infrared reflectance (MIR) was correlated with tropical forest EAGB (Curran et 

al. 1997, Boyd et al. 1999). The strength of the relationship between MIR and 

EAGB varied greatly between and within studies. Steininger (1998) notes that 

his results for young (<13 years of age) secondary forests from Brazil (R2= 0.7) 

and Bolivia (R2=0.03) cannot be directly compared with the results from Curran 

et al. 1997 (R2 =0.2) because the later did not use same atmospheric correction 

techniques. Steininger (1998) also reports that his results were highly sensitive 

to different atmospheric correction techniques. The author suggests that the 

reason the relationships between MIR and EAGB were different in Bolivia and 

Brazil may have been influenced by differences in sun angles and atmospheric 

haze over the two study areas where the Landsat TM data were acquired 

(Steininger 2000).  

Spectral reflectance data and spectral indices from passive optical 

instruments may not be ideally suited for the estimation of tropical forest EAGB. 

The sensitivity of NDVI to LAI in very young secondary forests, as well as the 

saturation of MIR in tropical secondary forests older than 13 years confirms the 

utility of passive optical data for mapping deforestation in tropical regions. 

However, because the data generally are not strongly correlated with forest 

EAGB in dense, older tropical forest areas these instruments are of limited use 
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in producing accurate estimates of biomass in areas which contain a large 

proportion of the carbon in the global terrestrial pool (Dixon et al. 1994).  

In addition to direct correlation of passive optical data with EAGB, there 

are efforts to incorporate this remotely sensed data into models that estimate 

biomass and carbon globally. Recent models have attempted to simulate the 

productivity of global terrestrial ecosystems. These models are usually driven 

by time-series data on the properties of the vegetation cover, such as changes 

in surface "greenness"  (inferred from changes in NDVI) from satellite 

observations.   

  The NASA-CASA model (Potter and Klooster 1999a) uses the 

relationship between NDVI and vegetation parameters such as fraction of 

absorbed photosynthetically active radiation (fPAR) to predict terrestrial net 

primary productivity (NPP). The model also simulates the relationship between 

terrestrial NPP fluxes and atmospheric carbon dioxide fluxes, and has been 

used to examine potential carbon sinks in the Northern Hemisphere (Potter 

1999) at a 1º grid scale. The model also produces global estimates of biomass 

at the same scale, but these estimates vary greatly from ground-based 

estimates (Olson et al. 1983) in high latitude, low productivity sites (Potter 

1999).  

The global production efficiency model (GLO-PEM) is a 'bottom-up' 

(mechanistic) model of primary production that incorporates remotely sensed 

estimates of absorbed photosynthetically active radiation (APAR) as well as 

environmental variables (e.g., temperature) that affect the utilization of APAR 

(Prince and Goward 1995). Global gross primary productivity (GPP) and NPP 
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values from GLO-PEM are similar to those produced from other approaches 

(Prince et al. 1995, Prince and Goward 1995, Goetz et al. 1999). In addition, 

GLO-PEM has been used to produce preliminary estimates of global biomass at 

the 8X8 km scale, using AVHRR data (Prince et al. 1995).  

Even if NASA-CASA, GLO-PEM or other terrestrial ecosystem 

productivity models can accurately predict net primary production in a given 

area through time, these models were not intended to predict the total amount 

of carbon or aboveground biomass in terrestrial ecosystems. The link between 

productivity and the total biomass is highly variable. As a result, the NASA-

CASA model predicts only fifty percent of the ground-derived EAGB that is 

found in high-latitude, mature coniferous and deciduous forests with low 

productivity. Although these modeling approaches are important in the effort to 

go beyond simple linear transforms between vegetation indices and forest 

production (Prince et al. 1995), the global terrestrial biomass estimations from 

these models should probably be considered in a relative manner, and not as 

representative of the absolute values to be used in global policy decisions such 

as the management of carbon stocks.  

Physical canopy reflectance models may also by applied through 

inversion of reflectance observations to infer physical characteristics, such as 

biomass (Strahler 1997). Radiative transfer models (e.g., Myneni 1991), 

consider multiple scattering of photons in canopies, but may not apply well to 

natural forest and savanna vegetation unless they are heavily calibrated (Wu 

and Strahler 1994). A more recent type of physical model, geometric-optical 

models, models vegetation cover as a collection of discrete objects, such as 
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individual plant crowns. An example of this type of model is the Li-Strahler 

model (Li et al. 1995) that treats individual plant crowns as three-dimensional 

objects. This model has been inverted to estimate forest structural 

characteristics, including EAGB with somewhat successful results (Wu and 

Strahler 1994, Yang and Prince 1997).  Similarly, geometric models have been 

used to relate crown shadow characteristics to forest EAGB in boreal regions 

(Hall et al. 1995). 

Recently, hybrid physical reflectance models (e.g., Li et al. 1995) have 

been developed that combine geometric-optical and radiative transfer 

principles. Early validation efforts from conifer forests in Maine (Li et al. 1995) 

and at BOREAS (Ni et al. 1997) show good agreement between modeled and 

observed reflectance data (Strahler 1997). Further advances in this field, 

coupled with a new suite of EOS sensors should radically improve the ability to 

predict land surface characteristics from satellite observations. However, the 

degree to which physical models will help with retrieval of forest biomass 

globally is uncertain because of the dependence of these models to knowledge 

of local forest canopy characteristics (Strahler 1997). 

 

Passive Optical Summary  

  Passive optical remote sensing instruments have proven to be extremely 

useful for global land cover classification (e.g., DeFries et al. 1995), and 

deforestation (Skole et al. 1994, Kimes et al. 1998) studies, primarily because 

of the sensitivity of spectral regions to differences in LAI associated with 

different forest types (e.g., deciduous vs, broadleaf) and ages (e.g., clear-cut, 
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vs. regenerating). However, because LAI in closed canopy (>80% cover) forest 

ecosystems typically reaches an asymptote early in succession while biomass 

may continue to increase for hundreds of years (Saldarriaga et al. 1988), these 

types of instruments may not be ideally suited for global estimation of terrestrial 

biomass, particularly in dense tropical forests. As a result, models that use this 

data will also be limited in producing accurate biomass estimates in dense 

tropical forest areas. Although products from existing and new EOS-era passive 

optical systems play a vital role in the realm of earth system science, there is 

currently a need to use alternative remote sensing technology to accurately 

estimate forest biomass.       

 

Radar Remote Sensing of EAGB 

Radar remote sensing examines the interaction of long wavelength 

microwave energy (typically between 1 and 150 cm) with vegetation structure. 

The majority of radar systems used to estimate forest structural characteristics 

are active (i.e., the energy is emitted and received by the instrument) systems. 

Passive microwave instruments have primarily been limited to estimating 

characteristics of agricultural crops (Ferrazzoli et al. 1992, Paloscia and 

Pampaloni 1992, Wigneron et al. 1993, Wigneron et al. 1995, Jin and Liu 1997, 

Wigneron et al. 1999), however the possibility of using these instruments to 

study forests has been addressed in theoretical framework (Ferrazzoli and 

Guerriero 1996).      

Active radar systems have a resolution that is proportional to the antenna 

length of the instrument, therefore synthetic aperture radar (SAR) techniques 
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are generally used for terrestrial land surface applications (Waring et al. 1995, 

Kasischke et al. 1997). Most SAR instruments emit energy in specific 

wavelength bands (e.g., C, L and P), each of which interact differently with 

particular components of the vegetation structure (see Waring et al. 1995 for a 

detailed discussion).  The radar signal that is reflected back in each of these 

bands is referred to as "backscatter". The amount of reflected energy, or 

backscatter, that is received corresponds to the particular wavelength that is 

emitted, the spatial resolution of the instrument, and the interaction of the 

energy at that wavelength with vegetation structure. Unfortunately, radar 

imagery often contains speckle (or radar fading), which generally requires the 

user to average pixels from a particular land cover type (Kasischke et al. 1997). 

One of the greatest benefits of radar, however, is that it is not greatly affected 

by atmospheric clouds and haze. 

Numerous studies have found relationships between radar backscatter and 

forest EAGB. From the relatively large body of literature that exists on the topic 

a few trends emerge. First, all radar bands are highly sensitive to water, and 

therefore may not operate well without relatively dry canopy and soil conditions 

(e.g., Dobson et al. 1995a, Harrell et al. 1997). Second, shorter radar 

wavelengths (X- and C-bands) are scattered and attenuated by canopy 

elements and are usually not effective for forest aboveground biomass 

estimation (e.g., Baker et al. 1994). Third, longer radar wavelengths (L- and P-

bands) tend to be most sensitive to changes in forest EAGB (e.g., LeToan et al. 

1992, Green et al. 1996). Fourth, multiple band sensors (e.g., AIRSAR, SIR-C) 

are more sensitive to changes in forest EAGB than single band sensors (e.g., 
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Dobson et al. 1992, Ranson et al. 1997). And finally, cross-polarized (e.g., 

horizontally transmitted, vertically received or HV) signals are usually more 

sensitive to changes in EAGB than single polarized (HH) signals (e.g., 

Kasischke et al. 1995, Harrell et al. 1997). 

Many studies report that radar backscatter is highly correlated with forest 

EAGB, and therefore report that radar is an effective tool for forest biomass 

estimation. These kinds of conclusions may be justified, but from the available 

literature it appears that a few qualifications need to be included with the above 

statement. First, these studies typically have been conducted in forest 

plantations (e.g., LeToan et al. 1992, Baker et al. 1994, Green et al. 1996) or in 

managed or natural forest ecosystems with low woody species diversity (e.g., 

Kasischke et al. 1995, Wang et al. 1995, Harrell et al. 1997, Hyyppa et al. 

1997).  In these relatively uniform, homogenous forests it is much easier to 

develop multiple-step approaches which first estimate individual components of 

the total forest aboveground biomass (e.g., crown biomass) and then apply 

these components in a secondary regression to estimate total EAGB (e.g., 

Dobson et al. 1995b, Kasischke et al. 1995, Harrell et al. 1997, Kasischke et al. 

1997). Kasischke et al. (1997) state "the complexities of these methods and the 

uncertainties are greater in landscapes where there are…multiple tree species." 

As a prime example, Luckman et al. (1997) found a weak relationship between 

a long radar wavelength band (L-band) and tropical forest EAGB in Brazil.   

A second qualification relates to a disagreement in the radar community 

about radar saturation in high biomass areas. Even in relatively homogeneous 

forest plantations radar instruments have been reported as insensitive to 
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increases in forest EAGB beyond a certain threshold. In some cases this 

threshold has been listed as between 100-150 Mg/ha (Imhoff 1995, Waring et 

al. 1995) for longer radar wavelengths, and even lower for shorter radar 

wavelengths. This “saturation threshold" varies a great deal depending on both 

the forest type and the analytical techniques used in a given study. For 

example, some studies have reported that the more elaborate multi-step 

techniques mentioned above were sensitive to EAGB levels up to 400 Mg/ha in 

managed loblolly pine forests (Kasischke et al. 1995) and to 250 Mg/ha in 

mixed coniferous/deciduous forests in Michigan (Dobson et al. 1995b). 

However, in the dense tropical forests of Brazil (Luckman et al. 1997) the 

saturation point was 60 Mg/ha, which is approximately the level found in a 10 

year old secondary tropical forest.    

     A final qualification relates to the general applicability of the results in the 

radar studies that are cited above. Although the studies have demonstrated that 

radar backscatter is empirically related to forest EAGB in particular plantations 

or forest ecosystems, it is unclear how general these relationships are outside 

of those study areas. This site specificity problem is not unique to radar remote 

sensing, however it is a clear obstacle in the attempt to estimate forest biomass 

over broad spatial regions or globally. 

 Despite these issues, radar has been used in several studies to 

effectively estimate aboveground biomass, especially in high latitude forests. 

Although the saturation levels of most SAR instruments would prohibit global 

biomass estimation (Imhoff 1995), recent studies using a low-frequency SAR 

instrument (CARABAS-II) are encouraging. Studies in deciduous and spruce 
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forests in southern Sweden have illustrated that the backscatter coefficient from 

CARABAS-II is significantly correlated (R2= 0.87), and does not saturate 

through EAGB levels of 375 Mg/ha (Fransson et al. 2000, Smith and Ulander 

2000). However, there are currently no low frequency radar results available 

from tropical forests.      

Several studies have also attempted to use physical models to help 

construct relationships between radar backscatter and forest EAGB. Most of 

these studies utilize physical models of how microwave energy scatters through 

different components of forest canopies (e.g., Ulaby et al. 1990, Sun et al. 

1991, Sun and Ranson 1995, Lin and Sarabandi 1999b). For example a recent 

Monte Carlo coherent scattering model that uses fractal-generated trees (Lin 

and Sarabandi 1999a) produced very similar results to SAR data from a boreal 

forest thus suggesting the need for more realistic models of forest structure. 

Future modeling efforts will certainly aid attempts to understand the complex 

interaction between microwave energy and forest structure. However, as was 

the case with physical models for passive optical remote sensing, the 

applicability of these models over broad spatial regions is uncertain because of 

the dependence of these models on knowledge of local forest canopy 

characteristics. 

Another study (Ranson et al. 1997) made an attempt to go beyond site-

specific limitations from both empirical relationships and physical models of the 

interaction of forest structure with radar backscatter. The authors used output 

from a gap-type forest succession model for a northern hardwood-boreal 

transitional forest area to drive a 3-D canopy backscatter model. Unfortunately, 
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the relationship between the modeled forest structure and the simulated radar 

backscatter was still found to underestimate EAGB and required field data for 

calibration, in particular the results were highly dependent on soil moisture 

levels.  

 

Radar Summary 

Radar remote sensing is an effective tool for land surface 

characterization (Kasischke et al. 1997), however its utility in global biomass 

estimation remains unclear (Imhoff 1995). Although saturation levels often differ 

in different forest conditions, it is still uncertain how applicable these 

relationships are outside of the study areas where they were developed. The 

insensitivity of radar backscatter to moderate and high forest biomass levels 

globally has led to a call to 1) move from attempts to correlate forest EAGB with 

radar backscatter to using radar to identify recently cleared and regenerating 

forest areas, 2) develop new technology to estimate EAGB in dense forests 

(Imhoff 1995). However it is likely that new low frequency SAR instruments will 

expand the applicability of radar instruments, especially if they are proven to be 

effective for biomass estimation in other areas. 

 Another consideration is the sensitivity of radar backscatter to water on 

vegetation. Studies by Harrell et al. (1997) and others have revealed very 

different relationships between forest EAGB and radar backscatter from two 

different time periods, one after a rain shower and one in relatively dry 

conditions. Some tropical regions may receive more than 4000 mm of rainfall 

per year, thus creating a spectrum of moisture conditions in their canopies. It is 
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likely that radar backscatter from the same tropical forest canopy with different 

moisture conditions would also be very different. The degree to which this 

moisture problem may have contributed to the poor results in Luckman et al. 

(1997) was not detailed. Similarly, how this problem may affect backscatter 

from new low frequency radar instruments in tropical forest has not been 

addressed.    

 

Lidar Remote Sensing of Forest EAGB 

 Lidar (light detecting and ranging) remote sensing, sometimes also 

called “laser altimetery,” is a relatively new technology that may greatly improve 

estimates of biomass in dense forest ecosystems. Whereas radar data are quite 

complex to process and interpret (Dobson 2000), data from lidar instruments 

are conceptually quite simple (Dubayah and Drake 2000). Lidar instruments 

measure the roundtrip time for pulses of laser energy to travel between the 

sensor and the target. From this travel time, the distance between the sensor 

and the target(s) can be derived. By subtracting the differences in timing of 

canopy and ground reflections, canopy height is derived. Although the way in 

which different lidar instruments operate varies (discussed below), the ability to 

measure canopy heights is a major benefit over other remote sensing 

techniques because it is a biophysical characteristic with a field legacy.  

Some lidar instruments emit short duration pulses of laser energy from 

low-flying aircraft and record the distance to the first intercepted surface within a 

relatively small (less than 1 m in diameter on the ground) sampling area, or 

footprint (Weishampel et al. 1996). Other versions of these “small-footprint” lidar 
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instruments record the distance to both the first and last returns within each 

footprint, and the distance between these two elevations is inferred to be the 

vegetation or "canopy" height for each footprint (Lefsky et al. 1999b). In many 

cases, energy from small footprint lidar instruments does not consistently reach 

the ground, which may reduce the apparent vegetation height (Weishampel et 

al. 1996).     

Next-generation, large-footprint lidar instruments (Blair et al. 1994, 1999), 

overcome many of the problems associated with small footprint instruments. By 

increasing the footprint size to at least the average crown size of a canopy-

forming tree (10-25 m), laser energy consistently reaches the ground even in 

dense forests (Weishampel et al. 1996). In addition to the traditional canopy 

height measurement, these instruments also digitize the entire time history of 

the outgoing and return laser pulses, thus providing a vertical profile of 

intercepted surfaces (or "waveform") from the top of the canopy to the ground 

(Blair et al. 1999). 

The ability of lidar instruments to recover canopy heights is important 

because of the strong link between the height and biomass of trees. In this case 

the allometric relationship moves from the level of the individual plant (Niklas 

1994b) to the plot or stand level (Figure 1.2). It is this type of allometric 

relationship that has allowed researchers to use lidar instruments to estimate 

forest aboveground biomass and/or volume in mixed hardwood-softwood 

(Maclean and Krabill 1986, Lefsky et al. 1999b), southern pine (Nelson et al. 

1988a, Nelson et al. 1988b), Scots pine (Nilsson 1996), Norwegian spruce-pine 
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Figure 1.2 In laser altimeter remote sensing plot-level 

allometric relationships can be developed to relate the total 

biomass (or aboveground biomass) of all trees within the 

sampling area to the laser altimeter-derived canopy height.  
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(Naesset 1997b), Douglas fir/ Western hemlock (Lefsky et al. 1999a, Means et 

al. 1999) and to a limited degree in tropical rainforests (Nelson et al. 1997).  

When canopy height is accurately measured, these instruments are generally 

able to estimate forest EAGB in a statistically significantly way.  

The accuracy of canopy height recovery from lidar instruments is influenced 

by many factors. Prior to kinematic differential global positioning systems, many 

of the earlier studies were significantly hindered by the problem of obtaining 

precise position of the aircraft. As a result the location of the lidar footprint 

within a forest stand was uncertain, thus making ground validation exercises 

difficult. The wavelength of the laser is also critical because of the spectral 

response of vegetation. Generally near-infrared wavelength (700-1150 nm) 

lasers are used because vegetation is highly reflective in this region. Nelson et 

al. (1984) used an ultraviolet laser, designed for bathymetric work, which may 

have negatively affected their results.  

Another critical factor that affects canopy height recovery from lidar 

instruments is the ability to consistently penetrate through the canopy to the 

ground. Many small-footprint sensors tend to yield ground return only in 

relatively open forest canopies (Weishampel et al. 1996). In more dense forests 

these small footprint sensors typically provide information pertaining only to 

canopy roughness and do not reveal accurate canopy heights. As a result 

small-footprint lidar instruments tend to yield poor EAGB estimates in dense 

forest areas such as in tropical rainforests (Nelson et al. 1997).  

Because of their ability to consistently penetrate to the ground, and to record 

complete waveforms from the canopy top to the ground, large footprint lidar 
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instruments are ideally suited for the estimation of forest structural 

characteristics such as EAGB. In addition to canopy height, waveform metrics 

from large-footprint lidar instruments, which are related to the vertical 

distribution of canopy elements within the sampled area, can also be used to 

improve the prediction of EAGB (Figure 1.3).  

An early airborne large footprint lidar instrument that has been used to 

estimate forest structural characteristics is the Scanning Lidar Imager of 

Canopies by Echo Recovery, or SLICER (Blair et al. 1994). As the name 

indicates, SLICER scans across its track to produce images of forest structure. 

A typical SLICER swath is comprised of five, contiguous 10 m diameter 

footprints and is therefore approximately 50 m across-track. In addition, the 

footprints are spaced contiguously along track.  

SLICER data has been correlated to forest EAGB in tulip poplar, and oak-

hickory stands in the coastal plain of eastern Maryland (Lefsky 1997, Lefsky et 

al. 1999b) and Douglas fir-western hemlock stands in western Oregon (Lefsky 

et al. 1999a, Means et al. 1999). In both cases, canopy height data from 

SLICER were incorporated into empirical regression equations to derive stand-

level aboveground biomass estimates. For both studies, these relationships 

were found to be highly significant. For example, Means et al. (1999) could 

predict total stand EAGB with r2 values of up to 0.90 with a canopy height metric 

from the SLICER data. This relationship was non-asymptotic through forest 

EAGB levels of 1300 Mg/ha, exceeding the normal saturation point of SAR 

instruments by approximately an order of magnitude. These studies illustrate 
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Figure 1.3 Conceptual representation of the relationship 

between laser altimeter waveform metrics and crown 

volume. Because of this relationship, laser altimeter metrics 

(in addition to canopy height) are helpful to predict biomass 

levels in forest ecosystems.  
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that new large-footprint lidar instruments are capable of accurately estimating 

aboveground biomass in some of the most carbon-rich temperate forests in the 

world. However, a thorough examination of the utility of lidar instruments in 

dense closed-canopy tropical forests is still necessary.   

Unlike passive optical and radar remote sensing work, there is a paucity of 

studies that model the physical interaction between laser energy and forest 

structure. A study by Nelson et al. (Nelson 1997) explicitly examined the affect 

of physical canopy characteristics on lidar metrics. Using this modeling 

approach, the authors demonstrated that simulated lidar heights differ by as 

much as 25% if different crown shapes (e.g., conical, elliptical) are used. 

Similarly, Magnussen and Boudewyn (1998) used two "models" of laser 

penetration into vertical forest structure to illustrate that the distribution of 

canopy heights from lidar instruments are a function of the vertical distribution 

of foliage area.  

Recent studies have also extended assumptions from a methodology 

developed to model foliar height profiles (FHP) from optical point quadrats 

(MacArthur and Horn 1969) to waveforms from large-footprint lidar instruments 

(Lefsky 1997, Lefsky et al. 1999a, Lefsky et al. 1999b, Means et al. 1999).  The 

MacArthur-Horn transformation assumes a constant leaf angle for all trees, a 

random distribution of all leaves, and a logarithmic decrease in energy from the 

top of the canopy to the ground to produce a "canopy height profile" or CHP 

(Lefsky 1997, Harding et al. 2001). Metrics from the CHP have also been used 

to estimate aboveground biomass, however they generally have not improved 

on the empirical relationship with canopy height (Means et al. 1999).  
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A recent study also illustrated that elevations from a scanning small footprint 

lidar instrument can be used to model large footprint lidar waveforms (Blair and 

Hofton 1999). For this particular case, the small footprint data densely covered 

the same area that was sampled with a large footprint instrument. This helps 

illustrate that large footprint lidar provide a "statistical sample" of forest surface 

elevations within each large (10-25 m) footprint. 

There is still a need to develop physical models of the interaction between 

laser energy and forest structure.  Although these physical models, which are in 

the early stages of development (Ni et al. 1999, Sun et al. in preparation), may 

also not be applicable over broad spatial regions, they will provide vital 

information about the utility and limitations of this new technology.  

 

Lidar Remote Sensing Summary 

Unlike radar and passive optical sensors, lidar instruments can recover 

biophysical characteristics that have a "field legacy" such as canopy height. 

Foresters and botanists have related stand EAGB and volume to heights of 

trees and forest stands for several decades (Husch et al. 1982, Niklas 1994a). 

As such these instruments have been used to accurately estimate forest 

aboveground biomass in a variety of forest conditions.  

  Beyond the recovery of canopy height, large-footprint lidar instruments 

also record information pertaining to the distribution of foliar and woody 

structural elements from the top of the canopy to the ground. Although these 

measurements do not have a direct analog in traditional forestry techniques, 
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they provide even more potential metrics to relate to forest structure such as 

EAGB.  

Strong linear, non-asymptotic relationships between lidar metrics and 

EAGB in coniferous forests in Oregon and temperate deciduous forests in 

Maryland reveal that this technology can accurately estimate aboveground 

biomass in a variety of temperate forests. However, large-footprint lidar 

instruments remain untested in dense closed-canopy tropical forests. 

There is also a need to explore the nature and generality of relationships 

between lidar metrics and aboveground biomass. Even across a wide range of 

conditions in tropical regions throughout the world there is a strong relationship 

between stand height and EAGB illustrated in Figure 1.4 (data from Cannell 

1982). It is important to note that the relationship in Figure 1.4 only uses canopy 

top height. Data pertaining to vertical distribution of canopy elements (either 

field- or lidar-derived) could potentially improve upon this relationship.  

       

Research Questions 

The research in this dissertation will attempt to develop relationships 

between large-footprint lidar data and forest structural characteristics in dense 

closed-canopy tropical forest ecosystems. Although the primary motivation is to 

use lidar data to accurately estimate tropical forest aboveground biomass, there 

is an underlying need to understand the fundamental nature of the relationship 

between lidar data and the forest structural components that together comprise 
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Figure 1.4  Relationship between total plot aboveground biomass 

(AGBM) and canopy top height (height of tallest tree in plot) for 

neotropical and paleotropical forest locations in M.G.R. Cannell (1984) 

World Forest Biomass and Primary Production Data, Academic Press, 

New York. Minimum plot size was 150m2. Plots that listed only a mean 

value for all tree heights sampled were not included. The black line in 

the figure is the regression line corresponding to the power equation 

(bold). The gray line is the regression line corresponding to the simple 

linear regression equation.  
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that biomass. In addition, the generality of the relationship between lidar data 

and forest structure throughout a broad range of environmental conditions 

found in the tropics must be examined. The specific questions that this research 

will address are listed below, followed by a brief overview. 

 

1. Can lidar data be used to accurately estimate biomass in a dense tropical 
forest?  

 

Although large-footprint lidar has been shown to be an effective new tool for 

estimating biomass in temperate forest sites (Lefsky et al. 1999a, Lefsky et al. 

1999b, Means et al. 1999), it remains an untested technology in dense tropical 

forest regions where over 40% of the carbon in the terrestrial pool may be 

located (Dixon et al. 1994). This is a potentially difficult biome for lidar 

instruments because in many dense tropical forests less than 1-2% of the total 

sunlight at the canopy top may reach the ground (Baldocchi and Collineau 

1994). This represents much greater canopy cover levels than most temperate 

forest areas where lidar has already been successfully tested.  

In the first stage of this research, relationships between field-estimated 

aboveground biomass and metrics derived from coincident lidar waveforms will 

be developed for a dense tropical forest landscape in Costa Rica. The field data 

will be from forest areas in different stages of succession (i.e., secondary and 

primary forests), and with different local environmental conditions (e.g., different 

soil types). 
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2. Are lidar metrics sensitive to differences in the vertical arrangement of 
forest structure over a tropical forest landscape?  

 

If lidar metrics are significantly correlated with differences in aboveground 

biomass in a tropical rainforest, then the fundamental nature of these 

relationships must be further examined. The strength of these relationships 

primarily will be determined by the ability of large-footprint lidar to record 

differences in canopy structure that are related to differences in aboveground 

biomass. For example, canopy height is a relatively straightforward lidar metric 

to relate to traditional field measurements, and should be correlated with 

changes in aboveground biomass through succession. Although other metrics 

that can be extracted from large-footprint lidar waveforms do not have a direct 

analog in traditional field techniques, they too may be highly correlated with 

changes in aboveground biomass through succession and in areas with 

different environmental conditions.  

The second stage of this research will involve a more detailed analysis of 

the sensitivity of lidar waveform metrics to differences in the vertical 

arrangement of forest canopy structure. The relationship between field-derived 

vertical canopy profiles and biomass first will be examined to provide a baseline 

for comparison to lidar-biomass relationships. In addition, both lidar- and field-

derived vertical canopy profiles will be compared to examine the sensitivity of 

lidar to important differences in vertical forest structure. 
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3. How general are the relationships between lidar metrics and forest 
structural characteristics (such as aboveground biomass) across closed-
canopy tropical forests with different environmental conditions? 

 

The remaining challenge is to explore the generality of relationships 

between metrics from lidar data and forest structural characteristics such as 

aboveground biomass and basal area. Thus far, the relationships that have 

been developed between lidar metrics and forest structural characteristics are 

site specific and there have been no attempts to compare relationships 

developed in areas with different environmental conditions. It will be necessary 

to examine the generality of these relationships in different areas so that global 

terrestrial biomass estimates can be made using data from future spaceborne 

lidar instruments such as the Vegetation Canopy Lidar (Dubayah et al. 1997).   

The primary goal in the final chapter is to examine the relationship between 

lidar metrics and aboveground biomass in closed-canopy Neotropical forest 

areas with different annual precipitation amounts. I will focus on a tropical wet 

forest (sensu Holdridge et al. 1971) area in Costa Rica, and on a tropical moist 

area in Panama that receives 50-75% less rainfall on average. First I will 

examine the relationships between lidar metrics and allometrically estimated 

aboveground biomass in the two study areas. Next I will develop relationships 

between lidar metrics and directly measured forest structural characteristics 

(e.g., basal area) at the two study areas. I will also look for additional factors 

(e.g., environmental characteristics) that could help explain any differences in 

the relationships at the two study areas.      
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Chapter 2. Estimation of Tropical Forest Structural 

Characteristics using Large-footprint Lidar 

 

Abstract 

Quantification of forest structure is important for developing a better 

understanding of how forest ecosystems function. Additionally, estimation of 

forest structural attributes such as aboveground biomass is an important step in 

identifying the amount of carbon in terrestrial vegetation pools and is central to 

global carbon cycle studies. Although current remote sensing techniques 

recover such tropical forest structure poorly, new large-footprint lidar 

instruments show great promise. As part of a pre-launch validation plan for the 

Vegetation Canopy Lidar (VCL) mission, the Laser Vegetation Imaging Sensor 

(LVIS), a large-footprint airborne scanning lidar, was flown over the La Selva 

Biological Station, a tropical wet forest site in Costa Rica. The primary objective 

of this study was to test the ability of large-footprint lidar instruments to recover 

forest structural characteristics across a spectrum of land cover types from 

pasture to secondary and primary tropical forests. LVIS metrics were able to 

predict field-derived quadratic mean stem diameter, basal area and 

aboveground biomass with R2 values of up to 0.93, 0.72 and 0.93 respectively. 

These relationships were significant and non-asymptotic through the entire 

range of conditions sampled at the La Selva. Our results confirm the ability of 

large-footprint lidar instruments to estimate important structural attributes, 

including biomass in dense tropical forests, and when taken along with similar 
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results from studies in temperate forests, strongly validate the VCL mission 

framework.    

 

Introduction 

Tropical forests are among the most structurally complex and carbon-rich 

ecosystems in the world. This complexity is related both to the size-frequency 

distribution of woody stems (Denslow and Hartshorn 1994, Clark and Clark 

2000) and to the three dimensional arrangement of canopy elements (e.g., 

leaves, branches, trunks) from the top of the canopy to the ground (Richards 

1996). Variation in tropical forest structure is influenced by underlying 

environmental conditions (Clark et al. 1998, Laurance et al. 1999, Clark and 

Clark 2000), and in turn creates microclimatic (e.g., light, temperature, humidity) 

gradients (Parker 1995). These fine-scale gradients modify biological processes 

such as competition and growth (Oberbauer et al. 1993, Rich et al. 1993, Clark 

et al. 1996, Nicotra et al. 1999) that further modify organization of forest 

structural components.    

Quantification of forest canopy structure provides information about the 

primary surfaces of energy and matter exchange between the atmosphere and 

one of the largest reserves of terrestrial aboveground carbon (Dixon et al. 1994, 

Perry 1994). Knowledge of the total carbon content in tropical vegetation 

provides a critical initial condition for studies at multiple scales which examine 

carbon flux caused by natural (e.g., landscape-level respiration of woody plants) 

and anthropogenic (e.g., deforestation and aforestation) processes. However, 

the accurate estimation of structural characteristics (e.g., aboveground biomass 
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or total amount of carbon within living tissues) of tropical forest vegetation 

remains a major obstacle (Dubayah et al. 1997). 

Most studies use forest aboveground biomass (AGBM), which is 

approximately 50 percent carbon, as a surrogate for total aboveground carbon. 

Because biomass can only be directly measured through destructive sampling, 

it is usually estimated through a relationship with other measurable properties. 

Field studies typically use allometric relationships between total biomass and 

the height or bole diameter of trees. Although field biomass estimation methods 

are useful for local scale studies, remote sensing techniques are necessary for 

the recovery of biomass over broader spatial scales.  

Most remote sensing studies illustrate the empirical correlation between 

forest biomass and the intensity of EM energy (or the ratio of energy at different 

wavelengths) that is received by the instrument. Unfortunately, many types of 

remote sensing instruments suffer from the same problem: they are sensitive to 

changes in biomass in relatively young and/or homogeneous forests, but in 

older or heterogeneous forests the signal becomes less predictable with respect 

to changes in biomass.  

Several studies have shown that passive optical instruments are 

insensitive to changes in tropical forest structural characteristics such as AGBM 

beyond secondary forests of 10-15 years (Sader et al. 1989, Foody and Curran 

1994, Moran et al. 1994, Steininger 1996, Curran et al. 1997). Metrics from 

synthetic aperture radar (SAR) such as backscatter also tend to saturate in 

dense forest conditions (Imhoff 1995, Waring et al. 1995, Kasischke et al. 1997) 
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and have been shown to be insensitive to changes in AGBM for secondary 

tropical forests with AGBM levels >60 Mg/ha (Luckman et al. 1997).   

New large-footprint lidar instruments (Blair et al. 1994, Blair et al. 1999) 

may be able to overcome the saturation problems of other remote sensing 

instruments. These instruments estimate canopy height as well as other 

parameters related to the vertical arrangement of canopy elements from the top 

of the canopy to the ground by directly measuring vertical structure 

(Weishampel et al. 1996, Blair et al. 1999, Lefsky et al. 1999b). However, this 

technology has not been applied to tropical forests.  The objective of this study 

was to test the ability of a new airborne large-footprint mapping laser altimeter 

instrument to accurately estimate tropical forest structural characteristics such 

as aboveground biomass and basal area in a dense, wet tropical forest. Related 

large-footprint laser altimetery technology will soon be incorporated in the 

spaceborne Vegetation Canopy Lidar (VCL) mission (Dubayah et al. 1997, 

Dubayah et al. 2000).  

In this paper we first provide a brief background on lidar remote sensing, 

including previous lidar studies of forest structure, and highlighting some 

differences between existing systems. Next we describe our study site and the 

new lidar instrument used in this study. Finally we present the results from this 

lidar instrument and discuss these results in relation to previous remote sensing 

efforts to estimate tropical forest structure. 
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Lidar Remote Sensing 

Lidar (light detection and ranging) is an active remote sensing technique 

using laser light. Lidar systems measure the roundtrip time for a pulse of laser 

energy (usually with a near-infrared wavelength for vegetation studies) to travel 

between the sensor and the target. This incident pulse of energy interacts with 

canopy (e.g., leaves, branches) and ground surfaces, and is reflected back to 

the instrument. The travel time of the pulse, from initiation until it returns to 

sensor, is measured and provides a distance or range from the instrument to 

the object (hence the common use of the term "laser altimetry" which is now 

generally synonymous with lidar).  

Current lidar systems for terrestrial applications differ in: (1) whether they 

record the range to the first return, last return, multiple returns or fully digitize 

the return signal; (2) footprint size (from a few centimeters to tens of meters); 

and, (3) sampling rate/scanning pattern. Most commercial airborne lidar 

systems are low-flying, small-footprint (5-30 cm diameter), high pulse rate 

systems (1,000-10,000 Hz). In addition, most commercial lidar systems record 

the range to the highest, and/or lowest, reflecting surface within the footprint, 

and are not fully imaging, using instead many laser returns in close proximity to 

each other to recreate a surface. 

Small-footprint lidar sensors may not be optimal for mapping forest 

structure for several reasons. First, small diameter beams frequently miss the 

tops of trees (see Nelson 1997). Secondly, because of their small beam size, 

mapping large areas requires extensive flying. Finally, with systems that only 
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record first and/or last returns, it is difficult to determine if a particular shot has 

penetrated the canopy all the way to ground. In areas of high canopy only one 

in several thousand returns may be from the ground (Blair and Hofton 1999). If 

this topography cannot be recovered, accurate height determination is 

impossible because canopy height is measured relative to the ground. 

Large-footprint lidar systems (Blair et al. 1994, Blair et al. 1999) have 

several advantages that help avoid these problems. First, by increasing the 

footprint size to the approximate crown diameter of a canopy-forming tree (~10-

25 m), laser energy consistently reaches the ground even in dense forests 

(Weishampel et al. 1996). Second, the larger footprint size also avoids the 

biases of small-footprint systems that frequently miss the tops of trees. Third, 

large-footprint systems fly at higher altitudes and enable a wide image swath, 

which reduces the expense of mapping large areas on the ground (Blair et al. 

1999).  Finally, large-footprint lidar systems also digitize the entire return signal 

(or "waveform"), thus providing data on the vertical distribution of intercepted 

surfaces (i.e., canopy and ground elements) from the top of the canopy to the 

ground.  

The conceptual basis for a large-footprint lidar return is illustrated in 

Figure 2.1. The time history of the reflected energy is fully digitized, and is 

converted to units of distance (accounting for the speed of light through the 

atmosphere). The first energy return above a threshold is used to derive the 

distance to the canopy top, and the midpoint of the last energy return is used to 

find the range to ground, the subtraction of which yields laser-derived canopy 

height.  The return waveform gives a record of the vertical distribution of nadir-
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Laser Vegetation Imaging 
Sensor (LVIS) 

Figure 2.1 Conceptual basis of lidar remote sensing. Incident Gaussian-

distributed pulses of laser energy from airborne or spaceborne instruments 

reflect off various portions of the canopy, resulting in a return waveform 

where the amplitude of the pulse is a function of the area of reflecting 

surfaces (leaves and branches) at that height. The entire waveform gives 

the vertical distribution of surfaces intercepted by the incident beam. Some 

of the incident light penetrates all the way through the canopy to produce the 

last large-amplitude Gaussian-shaped spike in the waveform known as the 

ground return. Lidar systems do not measure canopy height, but rather a 

target range determined by measuring the travel time of the pulse 

(accounting for the speed of light through the atmosphere).  Canopy height 

is determined by subtracting the range to the ground from that to the first 

detectable return or some threshold above that return. The Laser Vegetation 

Imaging Sensor (LVIS), a large-footprint airborne scanning lidar instrument 

that was used in this study, is illustrated in the top portion of the figure.    
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intercepted surfaces (i.e. leaves and branches). At any particular height, the 

amplitude of the return waveform measures the strength of the return. Thus, for 

surfaces with similar reflectance values and geometry within a footprint (and 

under similar atmospheric conditions), a larger amplitude indicates more 

canopy material and a smaller amplitude less. The waveform provides only an 

apparent canopy profile (leaves and branches) because of attenuation of the 

beam through the canopy, and must be adjusted to approximate the true 

canopy profile (Lefsky et al. 1999b, Ni et al. 1999). 

 

Previous Lidar Studies of Forest Structure 

Measurements from small-footprint laser altimeter instruments have 

been useful in estimating tree heights (Nelson et al. 1988b, Nilsson 1996, 

Naesset 1997a, Magnussen and Boudewyn 1998), percent canopy cover 

(Weltz et al. 1994), timber volume (Naesset 1997b) and in some cases forest 

aboveground biomass (Nelson et al. 1988b). However, these fine-resolution 

sensors typically yield consistent ground returns only in relatively open forest 

canopies (Weishampel et al. 1996), thus making AGBM estimation difficult in 

dense tropical forests. Previous attempts to estimate tropical forest AGBM 

using small-footprint laser altimeters have also been complicated by the 

incompatibility of data sets, for example the lack of coincident field- and laser-

derived data (Nelson 1997, Nelson et al. 1997, Nelson et al. 1998).  

Large-footprint lidar measurements, incorporating information contained 

in the laser return waveform, have been used to derive canopy height and 

structure in a variety of canopy closure conditions (e.g., Means et al. 1999 and 



 43

Lefsky et al. 1999b). Because these large-footprint lidar instruments 

consistently measure subcanopy topography, even under conditions of high 

canopy closure, they have been shown to recover forest canopy structure that 

is statistically indistinguishable from field measurements (Lefsky 1997), and are 

able to accurately capture spatial patterns of canopy heights (Drake and 

Weishampel 2000). These instruments have also accurately estimated AGBM 

in both Douglas fir/western hemlock (Lefsky et al. 1999a, Means et al. 1999) 

and temperate mixed-deciduous forests (Lefsky et al. 1999b). In both cases, 

data from the lidar instruments were incorporated into regression models to 

derive plot-level forest structural (e.g., AGBM) estimates. These relationships 

were found to be significant even through dense structural conditions. For 

example, Means et al. (1999) predicted total plot AGBM with R2 values of up to 

0.96 using lidar-based AGBM estimation models through biomass levels of 

1300 Mg/ha, far exceeding the normal saturation point of radar (≈150 Mg/ha 

from Dobson et al. 1992; (Waring et al. 1995); Imhoff 1995; Ranson et al. 

1997). These results suggest that data from the upcoming (2001) spaceborne 

VCL (Dubayah et al. 1997) mission will greatly improve global biomass 

estimates. 

 

Methods 

La Selva Biological Station 

The La Selva Biological Station (Figure 2.2; also see (Clark 1990, 

Matlock Jr. and Hartshorn 1999)) is located near the Sarapiquί River in 

northeast Costa Rica. Over its 46 year history, La Selva has become one of the 
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Figure 2.2 La Selva Biological Station is located near the 

Sarapiquí River in northeast Costa Rica. This 1536 ha area 

is a mixture of primary and secondary wet tropical tropical 

forest, pasture, plantations, and agroforestry plots.  
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most heavily studied tropical field stations in the world (McDade et al. 1994).   

This 1536 ha area is comprised of a mixture of lowland primary and secondary 

tropical wet forest (Holdridge et al. 1971), abandoned pasture, current and 

abandoned plantations, and agroforestry plots. The elevation range at La Selva 

is approximately 35-135 m above sea level, with a north to south gradient 

resulting in higher elevations and steeper slopes to the south where it borders 

on the 47,000 ha Braulio Carrillo National Park. The soils at La Selva are 

primarily a mixture of inceptisols (particularly in alluvial terraces in the north), 

and residual ultisols to the south (Clark et al. 1998, Clark and Clark 2000).       

The primary forest estimated AGBM and basal area values at La Selva 

are low in comparison with other primary tropical rainforests (Saldarriaga et al. 

1988, Brown et al. 1995, Brown 1997, Laurance et al. 1999). This may be due 

to differences between tropical moist forests (where the majority of studies are 

conducted) and tropical wet forest such as La Selva (see Clark and Clark, 2000 

for a more detailed discussion). Nevertheless the variety of land cover types, 

and the wealth of ancillary data (e.g., soil, topography, forest structural data) 

available, makes La Selva an ideal study site for this study.  

 

Field Data 

Forest structural data (Table 2.1) were collected across a successional 

spectrum ranging from abandoned pasture to primary wet tropical forests 

(Figure 2.2.). Primary tropical forest data were collected in 18, 0.5-ha plots that 

are part of an ongoing landscape-scale carbon storage and flux study (Clark 

and Clark 2000). The plots were stratified over three edaphic conditions: 
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relatively fertile flat inceptisols on old alluvial terraces (A plots); relatively 

infertile ultisols areas on ridgetops (L plots); and ultisol areas on steep slopes 

(P plots). All 18 plots were geolocated without knowledge of existing forest 

structure. This approach eliminates placement biases that can lead to large 

inaccuracies when AGBM values are extrapolated over a landscape-scale 

(Brown et al. 1995, Clark and Clark 2000).   

Secondary forest data were collected in three different areas that were 

approximately 14, 22 (Chazdon 1996, Guariguata et al. 1997, Nicotra et al. 

1999) and 31 (Pierce 1992) years old respectively as of March 1998. The 14 

and 22 year old secondary forest plots are each approximately 0.5 ha. Within 

the 31 year old secondary forest area, 6 circular plots of  12.5 m radius were 

geolocated so as to approximately coincide with LVIS footprints.  

  In each primary forest plot, all stem diameters greater than 10 cm were 

measured in a marked location on each tree, either at breast height (1.37m) or, 

when necessary, above buttressing (Clark and Clark 2000). In the 31 year old 

secondary forest plots, all stem diameters greater than 10 cm at breast height 

were measured. In the 14 and 22 year old secondary forest plots all stem 

diameters greater than 5 cm at breast height were recorded. These 

measurements were taken both as a part of a March 1998 VCL 

calibration/validation campaign, and as a part of the separate long-term studies.  

Stem diameters were used to calculate quadratic mean stem diameter 

(QMSD, Equation 2.1) basal area and aboveground biomass using an equation 

for tropical wet forests (Brown 1997). Quadratic mean stem diameters were 

calculated to compensate for the different (i.e. 5 cm vs. 10 cm) minimum 
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diameter thresholds that were used in the existing studies. In addition, 

published aboveground biomass values from agroforestry plots at La Selva 

(Menalled et al. 1998) and for tropical pastures (Olson et al. 1983) were used in 

this study.  

 

Equation 2.1        QMSD= ((ΣD2)/ n)1/2    where QMSD is the quadratic mean 

stem diameter, D is stem diameter and n is the number of stem diameters in the 

area 

 

Lidar Data 

The airborne instrument used in this study is the Laser Vegetation 

Imaging Sensor (LVIS, Blair et al., 1999). LVIS is a medium-altitude imaging 

laser altimeter, designed and developed at NASA's Goddard Space Flight 

Center. Variable-sized footprints and a randomly positionable laser beam and 7 

degree telescope field of view allow LVIS to operate in a variety of modes. 

Footprint diameters can be varied from 1 to 70 m, and footprint spacing can be 

varied both along and across track. The return signal, or waveform, is digitally 

recorded and converted to units of distance (by accounting for the speed of light 

through the atmosphere). In this study the vertical resolution was approximately 

30 cm, as determined by the digitization rate. Ancillary information such as the 

pointing direction and position of the laser at the time of each pulse (provided 

using an inertial navigation system and GPS unit) are also recorded. The 

combination of these data post-flight enables the geolocation of the laser 

footprint on the ground within a global reference frame (usually to better than 1 

m horizontal accuracy) (Hofton et al. 2000a). 
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In March 1998 LVIS was flown in a NASA C-130 airplane to map the La 

Selva Biological Station and surrounding regions of NE Costa Rica. LVIS was in 

VCL emulator mode and operated at an altitude of 8 km above the ground to 

produce eighty, 25 m diameter footprints separated by ~25 m along- and ~9 m 

across-track (See Figure 2.1). Unlike previous laser altimeter instruments which 

record narrow transects of data, LVIS is able to map entire landscapes with 

relatively few flights. Only LVIS footprints that were coincident with field study 

plots (see below for details) were selected.  

Four metrics were derived from the waveforms (see Figure 2.3). Lidar 

canopy height (LHT) was calculated by identifying 1) the location within the 

waveform when the signal initially increases above a mean noise 

level/threshold (the canopy top) and 2) the center of the last Gaussian pulse 

(the ground return), and then calculating the distance between these locations. 

Second, the height of median energy (HOME) was calculated by finding the 

median of the entire signal (i.e., above the mean noise level) from the 

waveform, including energy returned from both canopy and ground surfaces. 

The location of the median energy is then referenced to the center of the last 

Gaussian pulse to derive a height. The HOME metric is therefore predicted to 

be sensitive to changes in both the vertical arrangement of canopy elements 

and the degree of canopy openness (including tree density). Third, the 

height/median ratio (HTRT) is simply the HOME divided by canopy height. The 

HTRT provides an index of how the location of HOME may change relative to 

the canopy top height (LHT) through succession. Finally, a simple ground-return 

ratio (GRND) was calculated by taking the total intensity (i.e., the number of 
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Figure 2.3 Metrics derived from lidar waveforms. See 
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digitizer counts) contained in all 30 cm vertical bins contained in the last 

Gaussian peak (Hofton et al. 2000b) divided by the sum of the intensity of all 

other canopy vertical bins of the waveform (see Figure 2.3). Thus, GRND 

provides an approximation of the degree of canopy closure (note that the 

canopy closure can be directly derived from the waveform under suitable 

canopy assumptions, as found in Means et al. 1999). These four metrics were 

then incorporated into a stepwise regression procedure to predict field 

measured basal area and QMSD and field estimated AGBM.     

 

Analysis  

The analysis involving ground and laser altimeter derived data was 

performed at both the level of individual LVIS footprints (25 m diameter circle) 

and at the level of the average plot size (0.5 ha) for areas with coincident LVIS 

and field data (Figure 2.4a and b). For each field plot, only LVIS footprints that 

are located entirely within the plot (i.e., footprint center over 12.5 m from plot 

edge) were selected to avoid the affects of outside canopy structure that was 

not measured on the ground (Figure 2.4).      

 In all plots where stem maps were available (18 primary plots and the six 

31 year old secondary forest plots), footprint-level analysis was performed. All 

stems located within each LVIS footprint were selected and used to calculate 

forest structural characteristics (see below). In addition, a plot-level analysis 

was performed using all stems and LVIS footprints that fell entirely within each 

field plot (or in the case of pasture, using shots falling within an area of
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25m 

A B 

0 25 50 m 

Figure 2.4 (A) Footprint-level (0.05 ha) analysis involved all stems that 

were located within LVIS footprints.  (B) Plot-level analysis involved all 

stems that were located within a plot, and all LVIS shots that fell entirely 

within the same plot (i.e., 12.5 m from the plot edge). In this case the clear 

LVIS shots would be included, but the gray shot would not be included. At 

both the footprint and plot level, the stems that fell within the designated 

areas were used to calculate forest structural characteristics such as basal 

area and aboveground biomass. The relationships between these field 

values were then compared to metrics from individual footprints (A) or 

means of metrics for all footprints within the plot (A).       
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pasture)(Figure 2.4). Field and lidar data from the six footprint-sized plots, were 

combined into two (0.15 ha) plot-scale subsets.     

The diameters of all stems within the respective footprints or plots were 

used to calculate stem basal area. These stem diameters were also used to 

estimate aboveground biomass using the tropical wet allometric equation of 

Brown (1997):  

 

Equation 2.2  AGBMs= 21.297-6.953(D)+0.740(D2)   where D is stem 

diameter in cm, and AGBMs is the estimated oven-dried AGBM for  the stem  

 

 Basal area and estimated AGBM were then summed within the footprint 

or plot and were converted to standard units of area, m2/ha and Mg/ha 

respectively. Additionally, the quadratic mean diameter (Equation 2.1.) within 

each footprint or plot was also calculated.  

At the footprint-level, the lidar metrics were derived from individual 

waveforms. Plot-level values were calculated as the means of metrics for all 

footprints within the plot. For example, plot-level LHT was calculated for each 

plot by taking the mean of LHT values for all footprints within the plot (Figure 

2.4).  

Metrics derived from LVIS waveforms (Figure 2.3) were then used to 

estimate the field-derived forest structural summaries at both the footprint and 

plot levels using stepwise multiple linear regression.  During this process 

transformations of dependent and independent variables (including square, 

square root and logarithmic) were also explored. Those models that were found 

most predictive were then cross-validated (Cressie 1991) to define a 
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generalization error.  Finally, these models were applied to all of the LVIS data 

over La Selva to produce landscape-level maps of forest structural 

characteristics. 

 

Results 

The assortment of plots from different land cover types that are 

incorporated in this study span the range of forest structural characteristics for 

the La Selva landscape. Additionally because the 18 primary forest plots are 

evenly stratified over the main upland edaphic and topographic conditions at La 

Selva (Clark and Clark 2000), the primary forest data are an unbiased, 

representative sample of the structural conditions found in this primary tropical 

wet forest.   

In general all of the forest structural characteristics increase through the 

range of land cover types that were sampled (Table 2.1). There is a trend of 

increasing estimated AGBM and QMSD from pasture through secondary forest 

and into primary tropical forests. The exception to this trend is for the average 

QMSD value for the six 31 year old secondary forest sites, which is larger than 

the average QMSD of the primary forest sites. This exception is likely the result 

of large remnant trees (i.e., those not cut-down when the area was originally 

deforested), which are found within the 31 year old forest area (D.B. Clark, 

pers. obs.) and strongly influence the QMSD values 

Overall, the lidar metrics from these areas (Table 2.2) are sensitive to 

changes in forest structure in the different land cover types included in this 

study. The height metrics (i.e., LHT, HOME and HTRT) are the most sensitive, 
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Land Cover 
Type 

Age 
(years) 

Lidar 
Height 

(m) 
[LHT] 

Height of 
Median 
Energy 

(m) 
[HOME] 

HOME/LHT 
Ratio 

[HTRT] 

Ground 
Ratio 

[GRDRT]

Primary 
Forest 

Old-
growth 

31.33 20.14 0.64 0.014 

31 25.48 16.65 0.65 0.016 
22 17.68 11.32 0.63 0.013 

 
Secondary 
Forest 14 23.67 9.21 0.38 0.023 
Agroforesty 7 9.47 1.68 0.17 0.067 
Pasture* <5 5.09 0.54 0.11 0.740 

Table 2.2 Summaries for all lidar data used in this study by land cover 
types sampled at La Selva Biological Station  

*-Data from two LVIS shots from abandoned pasture sites at La Selva were compared to tropical  
   pasture AGBM data from Olson (1983)   
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and increase with increasing forest age, basal area and biomass. Ground return 

ratio is generally insensitive to changes in forest structure beyond a secondary 

forest age of approximately 14 years.    

At the footprint-level (0.05 ha) metrics from LVIS are able to significantly 

estimate all three forest structural attributes throughout the range of conditions 

at La Selva, though in most cases logarithmic transformations of dependent 

variables was necessary. The HOME metric is the best single predictor of both 

QMSD (Table 2.3, equation 1) and AGBM (Table 2.3, equation 5), and explains 

59% and 53% of the variation in these attributes respectively. The ground-

return ratio metric was the best single-term predictor of basal area (Table 2.3, 

equation 3), and explained 27% of the variation.  

For all three structural characteristics, multiple-term equations (Table 

2.3, equations 2, 4 and 6) explain much higher levels of variation (R2) than the 

single-term equations. The level of variation of basal area that is explained by 

both single and multiple-term equations is over 40% lower than the levels for 

AGBM and QMSD.    

At the plot level (~0.5 ha) all of the relationships between forest structural 

summaries and lidar metrics are much stronger than at the footprint level. For 

all single-term equations the levels of variation in forest structural summaries 

explained (R2 values) are over 35% higher at the plot level than at the footprint 

level, and range from 0.72 to 0.92. Again, the R2 values for AGBM and QMSD 

are higher than for basal area.   

The metric that is the best single-term predictor of both plot-level QMSD 

(Table 2.4, equation 1) and AGBM (Table 2.4, equation 4) is HOME, as is the 
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Forest 

Structural 
Characteristic 

 

 
Equation 

 
R2* 

 
RMSE 

 
(1) QMSD = 10.39+0.72*HOME 

 
0.59 

 
3.84 cm

 
 

Quadratic 
Mean Stem 
Diameter 

(cm) 
 

(2) Log(QMSD) = 
1.14+0.05*LHT-0.05*HOME-

0.72*GRND+2.43*HTRT 

 
0.77 

 
3.74 cm

 
(3) Sqrt(BArea) =  5.11-

6.28*GRND 

 
0.27 

 
7.88 

m2/ha 

 
 

Basal Area 
(m2/ha)  

(4) Sqrt(Barea) = 3.24 
+0.04*LHT-

4.12*GRND+1.15*HTRT 

 
0.39 

 
7.16 

m2/ha 

 
(5) Log(AGBM) = 3.58+ 0.07* 

HOME 

 
0.53 

 
63.17 
Mg/ha 

 
Estimated 

Aboveground 
Biomass 
(Mg/ha) 

 
(6) Log(AGBM) = 

2.06+0.07*LHT-0.08*HOME-
1.05*GRND+3.51*HTRT 

 
0.73 

 
60.02 
Mg/ha 

 
 *All values significant (p<0.01) 

Table 2.3 Regression equations and values for footprint-level (0.05 ha) 
forest structural characteristics 
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Forest 

Structural 
Characteristic 

 

 
Equation 

 
R2* 

 
RMSE** 

 
(1) QMSD = 8.19+0.81*HOME 

 
0.92 

 
2.09 cm 

 
 

Quadratic 
Mean Stem 
Diameter 

(cm) 

 
(2) QMSD 

=5.97+0.15*LHT+1.05 *HOME-
0.01*[LHT*HOME] 

 
0.93 

 
2.00 cm 

 

 
Basal Area 

(m2/ha) 

 
(3) Barea =  11.09+20.10*HTRT 

 
0.72 

 
3.00 m2 

 
 

(4) AGBM = 26.28+ 6.77*HOME

 
0.89 

 
22.54 

Mg/ha 

 
 

Estimated 
Aboveground 

Biomass 
(Mg/ha) 

 

 
(5) AGBM = 15.64+9.54*HOME-

0.01*HOME^3 

 
0.93 

 
18.39 

Mg/ha 

Table 2.4 Regression equations and values for plot-level (0.25-0.5 ha) 
forest structural characteristics 

* All values significant (p<0.01)  
 ** Numbers are cross-validated 
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case at the footprint level (Table 2.4). The HOME metric explains 89% of the 

variation in estimated AGBM and 92% of the variation in QMSD with no 

transformation of the dependent or independent variables. The best single-term 

predictor of plot-level basal area is HTRT (R2=0.72), instead of GRND, which is 

the best predictor of basal area at the footprint level.   

Multiple-term equations (Table 2.4, equations 2 and 5) only marginally 

improve the relationship for both QMSD (R2= 0.93 vs 0.92) and estimated 

AGBM (R2=0.93 vs. 0.89). For basal area, the single-term equation (Table 2.4, 

equation 3) was selected through all combinations and transformations in the 

stepwise multiple regression procedure.    

To further examine the nature of the single-term relationships, they are 

graphically represented in scatter plots (Figures 2.5-2.7). In all three cases the 

metrics significantly estimate forest structural summaries without reaching an 

asymptote throughout the entire range of conditions at La Selva. In addition, the 

cross-validated generalization error (RMSE) for all three single-term 

relationships (Table 2.4) is low. As a result these relationships were applied to 

LVIS data over the entire La Selva landscape to produce images of estimated 

QMSD (Figure 2.8), basal area (Figure 2.9) and AGBM (Figure 2.10) with a 

resolution equal to the plot level used in this study (~0.5 ha). In addition, the 

footprint-level (~0.05 ha) equation for AGBM (Table 2.3, equation 5) was 

applied to a subset of the LVIS data within a primary forest area to produce a 

high-resolution image of estimated AGBM variability (Figure 2.10, inset).          
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Figure 2.5 Plot-level quadratic stem diameter predicted from 

the LVIS height of median energy (HOME, Figure 2.4) metric. 

The regression line is equation 1 in Table 2.4.   
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Figure 2.6 Plot-level basal area predicted from the LVIS height 

ratio (HTRT) metric (Figure 2.4). The regression line is equation 

3 in Table 2.4.   
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Primary

Secondary ~31 yr

Secondary ~22 yr

Secondary ~14 yr

Agroforesty

Pasture

LVIS Height of Median Energy (m) 

Figure 2.7. Plot-level aboveground biomass (AGBM) predicted 

from the LVIS height of median energy (HOME, Figure 2.4) 

metric. The regression line is equation 4 in Table 2.4.   
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Figure 2.8 Image of quadratic mean stem diameter (QMSD) 

predicted from LVIS data over La Selva Biological Station using 

equation 1 in Table 2.4. Note the areas of lower QMSD in western 

portions of La Selva that were selectively logged in the late 1970s, 

and the clustering of high QMSD values near streams.   
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Figure 2.9 Image of basal area predicted from LVIS data over La 

Selva Biological Station using equation 3 in Table 2.4. Note the 

differences in basal area between younger secondary forest 

areas and primary forests (see land cover data in Figure 2.2).   
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Figure 2.10 Image of aboveground biomass (AGBM) predicted from 

LVIS data over La Selva Biological Station using equation 4 in Table 

2.4. Note the areas of lower AGBM in western portions of La Selva that 

were selectively logged in the late 1970s. In the right inset, AGBM 

predicted using the footprint level (~0.05 ha) equation (Table 2.3, 

equation 5) clearly reveals the clustering of high AGBM values near 

streams.   
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Discussion 

Field and Lidar Summaries 

 The trends in forest structural summaries (Table 2.1) are primarily in 

agreement with results from other studies for La Selva. As has been reported in 

other studies at La Selva (e.g., Guariguata et al. 1997) basal area does not 

significantly differ between older (i.e. ~22 yr) secondary and old-growth forests. 

The large remnant stems in the 31 year old secondary forest area result in the 

exception to the trend of increasing QMSD size through secondary forests and 

into primary forest plots, as mentioned above. Estimated AGBM is not as 

sensitive to remnant stems in secondary forest areas, and increases through 

the range of successional conditions sampled at La Selva. 

Lidar-derived metrics are quite sensitive to changes in forest structure, 

particularly LHT, HOME and HTRT (Table 2.2). The canopy height metric (LHT) 

from the 14 year old secondary forest plot is higher than expected, which could 

be the result of two factors. First, large remnant stems, which can account for 

as much as 15% of the total basal area in secondary forests at La Selva 

(Guariguata et al. 1997), coupled with the sensitivity of LVIS canopy height to 

the maximum detectable canopy surface may explain why these values are 

higher than expected. Second, precise plot boundary coordinates were not 

available for the 14 year old secondary plot, so the LVIS shots may not be 

entirely coincident with the actual plot location.   
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Footprint-level Relationships 

The relationships between lidar metrics and field-derived forest structural 

summaries at the footprint scale (~0.05 ha), though not as strong as the plot-

level relationships (Tables 2.3 and 2.4), are significant. The multiple-term 

equations (Table 2.3, equations 2 and 6) selected through a stepwise multiple 

regression procedure explain 77% of the variation in QMSD and 73% of the 

variation in estimated AGBM across the range of conditions sampled in this 

dense tropical landscape. Still the footprint scale R2 values are less than 65% of 

the plot-level single-term equations and less than 80% of the plot-level multi-

term regression equations (Tables 2.3 and 2.4). 

The footprint-level relationships could be negatively affected by two 

factors. First, the level of variability in forest structure at the scale of an LVIS 

footprint (0.05 ha) is much higher than at the plot level (~0.5 ha).  The level of 

variation in forest structural characteristics (as determined by calculating the 

coefficient of variation or CV) is 2-3 times higher at the footprint scale as the 

plot level (Table 2.5). This agrees with other studies that have reported that a 

plot size of approximately 0.35-0.5 ha is necessary for sampling tropical forest 

estimated aboveground biomass and other structural characteristics (Brown et 

al. 1995, Clark and Clark 2000). 

 A second factor that contributes to the weaker relationship between 

forest structural attributes and lidar metrics at the footprint-level is geolocation 

of LVIS observations and stems in each forest area. Although LVIS shots may 

be geolocated to within 1-2 meters (Blair and Hofton 1999, Hofton et al. 2000a), 

the location of stems within primary and the 31 year old secondary forest plots 
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Forest Structural 
Characteristic 

Footprint-level CV* Plot-level CV* 

Quadratic Mean 
Stem Diameter 

22.54 9.60 

Basal Area 33.56 11.94 
Estimated 

Aboveground 
Biomass 

43.41 14.01 

 

 

 

Table 2.5 Coefficients of variation in forest structural 
characteristics at the footprint-level (0.05 ha) and at the plot-
level (0.5 ha, old-growth and 0.3 ha for 6 combined 31 year old 
secondary forest plots).  

*These values were calculated using only primary and 31 year old secondary forest  
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were referenced to a plot corner using a compass and fiberglass measuring 

tapes. As a result stem locations may be off by 5-10 m in random (i.e., 

approximately unbiased) directions. Thus, stems that were included in particular 

LVIS footprints for this analysis may be as many as 12 m (LVIS shot 

geolocation uncertainty + stem geolcation uncertainty) outside of the footprint 

area, and stems that are up to 12 m outside of the footprint area and were not 

included may have truly been within the footprint.  

  

Plot-level Relationships 

The relationships between lidar metrics and forest structural 

characteristics at the plot level are strong (Table 2.4). Metrics from LVIS are 

able to explain very high levels of variation (R2 up to 0.93) in tropical forest 

aboveground biomass, basal area and quadratic mean stem diameter. These 

relationships are non-asymptotic (Figures 2.5-2.7) through the entire range of 

conditions sampled at La Selva, and permit estimates of AGBM to 

approximately the same level of accuracy as related large-footprint lidar studies 

in temperate coniferous forests (Lefsky et al. 1999a, Means et al. 1999).  

The slightly weaker relationship between basal area and lidar metrics is 

caused by the lack of significant differences in basal area between secondary 

and primary forest areas that has been reported in field studies at La Selva 

(Guariguata et al. 1997). Although the frequency distribution of basal area (i.e., 

number of stems in different size classes) does change, the overall total basal 

area at La Selva is not significantly different beyond a secondary forest age of 

approximately 16 years since abandonment (Guariguata et al. 1997). As a 
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result, lidar metrics such as LHT, HOME and HTRT which continue to increase 

with increasing forest age (Table 2.1) may not be as predictive of changes in 

total basal area compared to changes in estimated AGBM and QMSD. This 

may explain why ground return ratio (which is also insensitive to changes 

beyond a young secondary forest) was the best single-term predictor of basal 

area at the footprint-level (Table 2.3). 

The height of median energy (HOME) is perhaps the metric with the 

strongest potential for estimating tropical forest structural characteristics. It is 

the best single-term predictor of both footprint- and plot-level QMSD and AGBM 

(Tables 2.3 and 2.4).  The canopy height (LHT) metric is strongly influenced by 

the highest detectable canopy surface within a footprint. The HOME metric, 

however, may be more sensitive to both the vertical arrangement and density of 

canopy elements. In areas with densely packed canopy materials less lidar 

energy will reach the ground, thereby increasing HOME. Conversely in more 

open or disturbed areas (e.g., a treefall gap), more lidar energy will reach the 

ground, thus reducing HOME. Because primary tropical forests represent a 

spectrum from newly-created treefall gaps to mature patches with high canopy 

closure (Lieberman et al. 1989), the sensitivity of HOME to these changes 

make it an excellent predictor of forest structural attributes such as biomass.  

The generalization error (RMSE) of 22.54 Mg/ha for the aboveground 

biomass (Table 2.4, equation 4) level is 13.75% of the mean (160.5 Mg/ha) plot-

level AGBM for all primary forest areas sampled at La Selva. This value is also 

comparable to a recent study in temperate coniferous forests where RMSE 

levels (131 Mg/ha) were approximately 14% of the mean (965 Mg/ha) primary 
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coniferous forest AGBM level (Means et al. 1999). Additionally this value (the 

generalization error divided by the mean primary forest AGBM level) is 

approximately equal to the coefficient of variation of field-estimated AGBM at La 

Selva (Table 2.5) and is approximately equal to the level of error from field 

measurements (Brown et al. 1995).    

The images of forest structural characteristics (Figures 2.8-2.10) over the 

entire La Selva landscape allow for an unprecedented examination of the 

relationship between forest structural characteristics and environmental (e.g., 

edaphic and topographic) conditions. Field based efforts (Clark and Clark 2000) 

have shown that although the AGBM summaries from primary forest plots in 

areas with different soil and topographic conditions do not significantly differ, 

the way in which this AGBM is distributed (i.e., the distribution of stem sizes) 

does vary. In future work we hope to fully explore the variability in AGBM 

arrangement over the entire La Selva landscape.  

The landscape-scale images of tropical forest structural characteristics 

(Figures 8-10) reveal several trends. First, through comparisons with a map of 

La Selva land cover (Figure 2.2) secondary and primary forest areas are clearly 

distinct in terms of estimated AGBM (Figure 2.10) and QMSD (Figure 2.8), but 

not in terms of basal area (Figure 2.9), as expected from field studies 

(Guariguata et al. 1997). Secondly, an area of primary forest in western La 

Selva that was selectively logged (i.e., commercial stems >70 cm diameter 

were removed) in the late 1970s is also distinct from the undisturbed primary 

forest in eastern La Selva (with approximately the same edaphic and 

topographic conditions).  Third, high estimated AGBM (Figure 2.10), basal area 
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(Figure 2.9) and QMSD (Figure 2.8) values are clustered around stream valleys 

throughout the La Selva landscape, consistent with field data (Clark and Clark 

2000).     

 Previous remote sensing studies using passive optical and SAR 

instruments have had great difficulty in estimating tropical forest structural 

characteristics such as AGBM. Metrics from passive optical instruments such 

as Landsat are highly sensitive to leaf area index, or LAI (Running et al. 1986, 

Hall et al. 1995) but in the tropics LAI and leaf biomass levels may become 

asymptotic in secondary forests less than 10 years old (Brown and Lugo 1990, 

Foody et al. 1996). This may explain why passive optical instruments are 

insensitive to changes in AGBM beyond secondary forests of 10-15 years 

(Sader et al. 1989, Steininger 1996). Similarly, SAR backscatter tends to 

saturate in dense forest conditions (Imhoff 1995, Waring et al. 1995, Kasischke 

et al. 1997) and has been shown to be insensitive to changes in AGBM for 

secondary tropical forests with AGBM levels >60 Mg/ha (Luckman et al. 1997).  

Consequently, the ability of a large-footprint lidar to accurately predict tropical 

forest structural characteristics across a dense, structurally complex, dense 

tropical forest landscape is extraordinary.        

 

Conclusions 

Metrics derived from a large-footprint lidar instrument were significantly 

correlated with tropical forest structural characteristics at both footprint and plot 

levels across the entire range of conditions in a structurally complex tropical wet 

forest. Although the majority of the field-measured forest structural data are 
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from the high-end of the biomass and basal area spectrum at La Selva, the 

instrument nonetheless successfully measured the structural heterogeneity 

within this dense primary forest at both footprint (0.05 ha) and plot (~0.5 ha) 

levels.      

At the level of individual LVIS footprints (0.05 ha) the relationship 

between lidar metrics and forest structural characteristics is weakened by 

problems of geolocation (stems and LVIS footprints) and the level of variation in 

forest structure at that scale. Nevertheless, even with these factors the 

relationships between lidar metrics and tropical forest structural attributes are 

strong through the entire range of conditions sampled.  

 At the plot level (0.5 ha) these factors are negligible and the relationship 

among plot-level forest structural summaries and lidar metrics are extremely 

strong. The levels of variation explained by metrics from the LVIS instrument at 

this scale are significantly higher than for any other remote sensing instrument 

for tropical forests areas to our knowledge. The level of generalization error of 

the relationships between lidar metrics and QMSD and estimated AGBM is 

approximately the same as from previous studies in more open temperate 

forests. As a result, when these relationships are applied to LVIS data over the 

entire landscape at La Selva, it is possible to examine the relationship between 

forest structural characteristics and environmental conditions (e.g., topography) 

and past land use (e.g., selective logging).  

Although several of the forest structural characteristics used in this study 

from La Selva are lower than many moist tropical rainforests (Saldarriaga et al. 

1988, Brown et al. 1995, Brown 1997, Laurance et al. 1999) this is not the case 
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for all forest characteristics at La Selva. For example, the heights of emergent 

(>50 m) and average canopy-forming trees (~33 m) at La Selva are 

approximately equivalent to those found in other Neotropical rainforests 

(Richards 1996).  

Perhaps more important from a lidar remote sensing point of view is the 

light availability at ground level. The degree of canopy closure in primary and 

secondary forest areas at La Selva is approximately 98-99% at 1m above 

ground level (Fetcher et al. 1994, Nicotra et al. 1999). This is among the highest 

canopy closure values found in tropical and extra-tropical forests (Baldocchi 

and Collineau 1994). Thus, although large-footprint lidar has proven effective 

for estimation of forest structure in temperate forests with higher AGBM levels 

than La Selva, the ability of this technology to recover forest structural 

characteristics in a dense tropical forest with 3-4 times higher canopy closure 

than most temperate forests (Baldocchi and Collineau 1994) is critical. This 

ability is particularly important at a global scale because tropical forests are 

estimated to contain approximately 40% of the carbon in the terrestrial 

vegetation pool (Dixon et al. 1994). The combination of the previous efforts in 

temperate forests along with this study in tropical forests strongly confirm that 

next-generation lidar technology, as found on the Vegetation Canopy Lidar 

(VCL) mission, will greatly improve global estimates of aboveground biomass 

and other forest structure.    
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Chapter 3. Sensitivity of large-footprint lidar to canopy 

structure and biomass in a Neotropical rainforest 

 

Abstract 

Accurate estimates of the total biomass in terrestrial vegetation are 

important for carbon dynamics studies at a variety of scales. Although 

aboveground biomass is difficult to quantify over large areas using traditional 

techniques, lidar remote sensing holds great promise for biomass estimation 

because it directly measures components of canopy structure such as canopy 

height and the vertical distribution of intercepted canopy surfaces. In this study 

our primary goal was to explore the sensitivity of lidar to differences in canopy 

structure and aboveground biomass in a dense, Neotropical rainforest. We first 

examined the relationship between simple vertical canopy profiles derived from 

field measurements and the estimated aboveground biomass (EAGB) across a 

range of field plots located in primary and secondary tropical rainforest and in 

agroforestry areas. We found that metrics from field-derived vertical canopy 

profiles are highly correlated (R2 up to 0.94) with EAGB across the entire range 

of conditions sampled.  Next, we found that vertical canopy profiles from a 

large-footprint lidar instrument were closely related with coincident field profiles, 

and that metrics from both field and lidar profiles are highly correlated. As a 

result, metrics from lidar profiles are also highly correlated (R2 up to 0.94) with 

EAGB across this Neotropical landscape. These results help to explain the 

nature of the relationship between lidar data and EAGB, and also lay the 
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foundation to explore the generality of the relationship between vertical canopy 

profiles and biomass in other tropical regions.        

 

Introduction  

 The total biomass of terrestrial vegetation is an important variable for 

studies at multiple scales. As biomass (i.e., the total biological material or mass 

in a given area at a given time) is approximately 50% carbon, changes in the 

total biomass through time are important both at local (e.g., forest carbon 

dynamics) and regional to global scales (e.g., carbon release from large forest 

fires). Because tropical areas contain a large proportion of the total carbon in 

terrestrial vegetation globally (Dixon et al. 1994), knowledge of the biomass 

content in tropical ecosystems can provide an initial condition or baseline for 

studies that examine carbon flux related to natural (e.g., disturbances) and 

anthropogenic (e.g., deforestation) processes. However, the estimation of 

terrestrial vegetation biomass, especially in dense tropical forests, has proven 

difficult. 

Most remote sensing techniques to estimate biomass are empirical, and 

illustrate the correlation between biomass and the intensity of electromagnetic 

radiation (or the ratio of energy at different wavelengths) that is received by the 

instrument (e.g., Sader et al. 1989, Moran et al. 1994, Foody et al. 1996, Curran 

et al. 1997, Luckman et al. 1997, Steininger 2000). In some cases a modeling 

approach is also incorporated to explain the physical interaction between the 

electromagnetic radiation and forest canopy structure (Strahler 1997). Many 

remote sensing instruments, however, have the same problem: they are able to 
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detect differences in biomass in relatively young and/or homogeneous forests, 

but are not as sensitive to changes in biomass in older or heterogeneous 

forests (Wickland 1991, Imhoff 1995, Waring et al. 1995, Weishampel et al. 

1996).  As a result, estimating terrestrial biomass, especially in dense primary 

tropical forests has proven difficult (e.g., Sader et al. 1989, Moran et al. 1994, 

Foody et al. 1996, Curran et al. 1997, Luckman et al. 1997, Steininger 2000).  

Lidar (Light Detecting and Ranging) remote sensing is a relatively new 

active remote sensing technique with potential for estimation of terrestrial 

vegetation biomass (Lefsky et al. 1999a, Means et al. 1999, Dubayah and 

Drake 2000, Dubayah et al. 2000, Drake et al. In press). Lidar instruments have 

been used to accurately estimate canopy height (Nelson et al. 1988b, Lefsky et 

al. 1999b, Magnussen et al. 1999, Drake and Weishampel 2000, Peterson 

2000) and vertical structure (Harding et al. 2001, Parker et al. 2001) in a variety 

of different forest types.  As a result, lidar instruments reliably provide important 

biophysical characteristics that can then be used to estimate changes in 

biomass in forests.  

The empirical relationships between lidar-derived canopy height and 

forest biomass are conceptually similar to the allometric relationships used in 

field studies (Niklas 1994a). The primary difference is that instead of relating 

changes in the height or diameter of individual trees to the changes in biomass, 

the relationship is between lidar-derived canopy height (or other lidar metrics) 

and the total aboveground biomass of all trees within the area of interest (e.g., a 

field plot). The changes in canopy height and structure through succession are 

also affected by ecological processes (e.g., competition, stand-thinning) 
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operating on individual trees through time. The net result is that the vertical 

growth of forest stands also correlates with an overall increase in stand 

biomass levels.   

In addition to canopy height, new large-footprint, full-digitization lidar 

instruments also provide data related to the vertical arrangement of forest 

structure from the top of the canopy to the ground (Dubayah et al. 1997, 

Dubayah and Drake 2000, Dubayah et al. 2000, Harding et al. 2001). This data 

can also be used to improve the prediction of biomass (Lefsky et al. 1999a, 

Lefsky et al. 1999b, Means et al. 1999, Drake et al. In press), and to estimate 

the vertical distribution of forest structure such as vertical foliar profiles (Harding 

et al. 2001) and the vertical distribution of light transmittance (Parker et al. 

2001). As such, lidar instruments provide a wealth of data potentially suited for 

estimation of biomass in carbon-rich tropical forest ecosystems.  

  Drake et al. (In press) showed that metrics from an airborne large-

footprint lidar instrument were correlated with the estimated aboveground 

biomass across a successional spectrum of sites ranging from abandoned 

pasture to dense primary tropical forest. However, there is still a need to 

examine the nature of this empirical relationship to understand why metrics 

from lidar data are highly correlated with aboveground biomass in tropical 

forests. The generality of these relationships will bear on global applications of 

these types of lidar data such as the Vegetation Canopy Lidar (VCL) mission 

(Dubayah et al. 1997) and on the design of future lidar instruments. 

The primary goal of this study is to explore the sensitivity of lidar to 

vertical canopy structure and biomass across a Neotropical rainforest 
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landscape. We hypothesize that the strong relationship between metrics from 

large-footprint, full-digitization lidar instruments and aboveground biomass in 

tropical forests is the result of: 1) the sensitivity of lidar to differences in vertical 

canopy structure and 2) the correlation between vertical canopy structure and 

total aboveground biomass. In both cases, the relationships may be valid 

across a wide range of successional and environmental conditions. To test 

these assertions we take a three-step approach. 

 First, we examine the relationship between field-derived vertical canopy 

profiles and biomass. Metrics from the distributions of stem heights (e.g., 

maximum stem height) and from vertical canopy profiles derived from field 

measurements in a series of plots located in a dense tropical rainforest are 

compared to the total biomass in the plot. This approach reveals which 

components of vertical canopy structure are most correlated with total biomass 

across different successional (e.g., secondary vs. primary forest) and 

environmental  (e.g., edaphic) conditions. In addition, the field-derived vertical 

canopy profile comparisons serve as a baseline with which to compare lidar-

derived vertical canopy profiles. A key question we address is: are metrics from 

a vertical canopy profile correlated with aboveground biomass over the entire 

range of conditions encountered in a dense tropical rainforest, or do they 

saturate in old-growth or "primary" forest areas?   

 Second, we examine the relationship between vertical canopy profiles 

derived from both lidar and field techniques. Because of obscuration effects, 

less lidar energy is available at the bottom of the canopy. Therefore an existing 

transformation technique (Lefsky et al. 1999b, Harding et al. 2001) is also used 
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on the lidar data for comparison. Metrics from both normal and transformed 

lidar profiles are then compared with corresponding metrics from field profiles. 

Next, we examine the relationship between complete profiles from lidar (normal 

and transformed) and field techniques. This process illustrates the relationship 

between vertical canopy profiles derived using vastly different techniques (i.e., 

field vs. lidar remote sensing), and whether transformations of lidar profiles are 

necessary. The two questions we address here are: 1) are metrics from 

untransformed or transformed lidar profiles correlated with metrics from field 

profiles and 2) are lidar- and field-derived vertical canopy profiles from each plot 

related or are they significantly different?        

 Finally, we compare the relationships between aboveground biomass 

and metrics from both field- and lidar-derived vertical canopy profiles. In this 

section we illustrate how lidar compares with the field techniques for predicting 

aboveground biomass across different successional and environmental 

conditions. The primary question in this section is: do metrics from lidar profiles 

explain the same level of variation in biomass as metrics from field profiles?     

 

Methods 

La Selva Biological Station 

 This study uses field and lidar data acquired at the La Selva Biological  

Station (McDade et al. 1994), a 1536 ha tropical forest research facility located 

in northeast Costa Rica (Figure 3.1). La Selva is comprised of a mixture of 
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Figure 3.1 Locator map for study site at La Selva Biological Station in 

northeastern Costa Rica. La Selva is a 1546 ha area comprised of a 

mixture of primary and secondary tropical rainforest, agroforesty, 

plantations, and recently abandoned pastures.    
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lowland primary and secondary tropical rainforest (classified as "tropical wet 

forest" in (Holdridge et al. 1971), agroforestry and plantation plots, and recently 

abandoned pastures (McDade et al. 1994, Matlock Jr. and Hartshorn 1999). 

Within these separate areas there are ongoing studies related to forest carbon 

dynamics (Clark and Clark 2000), light environments in primary and secondary 

forests (Nicotra et al. 1999), and the growth of commercially valuable trees in 

managed agroforestry plots (Menalled et al. 1998), among many others.  

 

Field Data 

Field data were collected across a wide range of successional, land-use 

and environmental conditions at La Selva (Figure 3.1). Data were collected both 

as a part of the March 1998 prelaunch validation/calibration campaign of the 

Vegetation Canopy Lidar mission (Dubayah et al. 1997, Dubayah et al. 2000), 

and as a part of ongoing field studies at La Selva. Data from 3 different 

landcover types, 18 primary forest, 3 secondary forest and 6 agroforestry plots 

were used in this study.  

The 18 primary forest plots (0.5 ha each) are evenly stratified over three 

edaphic and topographic conditions: 6 are located in relatively fertile flat 

inceptisol areas on old alluvial terraces, 6 are in relatively infertile ultisol areas 

on ridgetops and 6 are in ultisol areas on steep slopes. All of these plot 

locations were identified in the laboratory using a GIS, and were established in 

the field without reference to surrounding forest conditions (i.e., their positions 

are not biased by local structural characteristics). In all primary plots, detailed 

measurements of stem diameters of all trees greater than 10 cm diameter have 



 83

been collected annually as a part of ongoing carbon dynamics studies (see 

Clark and Clark 2000 for more details). Stem diameters were measured either 

at breast height (1.37 m) or, when necessary, above buttressing.  

Data in secondary forests were collected in three different areas that 

were approximately 14, 22 (Chazdon 1996, Guariguata et al. 1997, Nicotra et 

al. 1999) and 31 (Pierce 1992) years old respectively as of March 1998. The 14 

and 22 year old secondary forest plots are each 0.5 ha. Six, 25 m diameter 

circular plots were also geolocated to approximately coincide with lidar footprint 

locations within the 31 year old secondary forest area. Within the 14 and 22 

year old secondary forest plots, all stem diameters greater than 5 cm diameter 

were measured. In the 31 year old plot, all stem diameters greater than 10 cm 

diameter were measured. Because of the smaller size of the plots in the 31 year 

old forest area, the field data from these 6 plots were pooled to form plot-level 

profiles (see below) and a singe biomass estimate for this 31 year old area.     

Estimated aboveground biomass (EAGB) values were then calculated for 

all live stems in each forest plot using Equation 3.1, which was developed for 

tropical wet forests (Brown 1997). Plot-level EAGB values (in Mg/ha) were 

calculated by summing the EAGB values for all live stems within the plot.  

 

Equation 3.1   EAGBs= 21.297-6.953(D)+0.740(D2)     where D is stem 

diameter in cm, and EAGBs is the estimated oven-dried aboveground biomass 

(in Kg) for  the stem. Note that this equation relies exclusively on stem diameter 

and does not include tree height.  
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Within each plot, measurements related to vertical canopy structure were 

also collected on a subset of the trees, with a particular emphasis placed on 

canopy-forming trees (i.e., classified as either dominant or co-dominant).  Stem 

heights and crown depths (i.e., from the top of the tree to the lowest live branch) 

were measured using a laser rangefinder. A reflector at the base of the tree was 

used as a target for horizontal distance measurements. Crown diameters were 

measured using either a laser rangefinder or standard fiberglass measuring 

tapes. The crown diameters were measured in the direction of the longest 

branches and, therefore, represent the maximum horizontal crown extent.  

Stem diameter measurements were also used to estimate height and 

crown dimensions for all remaining trees where these measurements were not 

taken. Allometric relationships were developed to estimate stem height, crown 

diameter and crown depth using the subset of trees sampled in each area 

(Table 3.1). Separate equations were developed for plots in secondary forest 

areas, and for plots located in primary forest areas with different edaphic 

conditions (inceptisol vs. ultisols). Separate equations compensated for 

differences in the coefficient of variation of height and crown measurements in 

each area that may have been the result of different field crews in each 

respective area.  

Finally, published aboveground biomass and crown volume values from 

6 (0.12 ha) agroforestry plots at La Selva (Menalled et al. 1998) were also 

incorporated into this study. The approximate locations of these plots were 

determined using an ancillary fine-resolution (~33 cm) lidar data set collected 
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Y Plots Equation* R2 RMSE 
(m) 

Primary 
Inceptisol 
(n= 111) 

y = 15.21 Ln(x) - 
26.38 

0.822 3.6 

Primary 
Ultisol      
(n=302) 

y = 10.10 7Ln(x) 
- 12.41  

0.483 5.1 

 
 

Height 
 

Secondary 
(n=631) 

y = 10.77 Ln(x) - 
11.63  

0.745 3.9 

Primary 
Inceptisol 
(n= 111) 

y = 0.306x + 
1.24 

0.576 4.3 

Primary  
Ultisol     
(n=302) 

y = 0.16x + 3.76 0.274 3.2 

 
 

Crown 
Depth 

 

Secondary 
(n=631) 

y = 0.28x + 2.29 0.495 3.0 

Primary 
Inceptisol       
(n= 111) 

y= 0.20x + 4.17 0.706 2.1 

Primary  
Ultisol     
(n=302) 

y = 0.14x + 4.41 0.276 2.8 

 
 

Crown 
Diameter 

Secondary 
(n=631) 

y = 0.19x + 2.37 0.532 1.9 

 

 

 

 

Table 3.1 Regression models developed from stems with measured 
heights, crown depths and crown diameter. Separate equations were 
developed for stems found in plots in secondary forests, and in primary 
forest areas with different soil conditions. 

*For all equations x= stem diameter (cm) 
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over the northern portion of La Selva (M. Roth unpublished, see Blair and 

Hofton 1999).   

  

Derivation of Field Vertical Canopy Profiles 

Vertical canopy profiles were derived from measured and modeled stem 

heights and crown dimensions in all plots. The field-derived vertical canopy 

profiles are comprised of a total of 180 30 cm bins (to correspond with the 

vertical bin size of the lidar waveforms), for a total height of 54 m. The profiles 

represent the vertical distribution of crown volume, and the methods for deriving 

them are described next.   

First, all crowns are modeled to have a simple cylindrical shape bounded 

by the crown depth and crown diameter values, and placed at the appropriate 

height according to the stem height value. Second, the total cross-sectional 

area of all intersected crowns within each 30 cm vertical bin is then summed. 

For each plot, this produces a vertical canopy profile based on the distribution 

of crown volume. This process is illustrated in Figure 3.2.   

Quantile metrics are then calculated for each average profile to represent 

the relative distribution of canopy materials (Figure 3.2). These metrics 

represent the height below which X% of the total crown volume is located 

(denoted as FCVX, where X represents the percentage of "FCV" or field-

estimated crown volume). For this study FCV01, FCV05, FCV10, FCV25, 

FCV75, FCV90, FCV95, FCV99 and "HMFCV" (the height of median crown 

volume, equivalent to FCV50) were calculated. For simplicity, not all metrics are 

shown in the results section.    
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Crown shapes 
modeled from field 
measurements 

Max Stem 
Height

Mean Stem 
Height 

Cross Sectional Crown Area  (m2)

Height of Median Crown 
Volume (HMFCV) 

95 % Crown Volume Height (FCV95) 

Crown Volume

5 % Crown Volume Height (FCV05) 

H
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t 
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Figure 3.2 Derivation of field vertical canopy profiles. For this 

study, crown volume distributions were calculated from field 

measurements in all plots. A simple cylindrical crown shape, 

bounded by crown depth and crown diameter measurements, 

was assumed for tree crowns. The cross-sectional area of all 

crowns intersected is then summed for each 33 cm height 

interval. Metrics were derived from both the distribution of tree 

heights (e.g., mean stem height) and from the vertical canopy 

profiles (e.g., FCV95). 
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Lidar Data 

The lidar data used in this study are from the airborne Laser Vegetation 

Imaging Sensor (LVIS, Blair et al. 1999). LVIS is a medium-altitude, medium- to 

large-footprint imaging laser altimeter, designed and developed at NASA's 

Goddard Space Flight Center.  LVIS digitizes the entire return signal, thus 

providing a waveform relating to the vertical distribution of intercepted canopy 

and ground surfaces within each footprint (Figure 3.3; and see Blair et al. 1999, 

Dubayah and Drake 2000, Dubayah et al. 2000 for more details).    

In March 1998, LVIS was flown in a NASA C-130 cargo plane over La 

Selva Biological Station and surrounding regions of northeast Costa Rica. LVIS 

was flown at an altitude of 8 km above the ground to produce eighty, 25 m 

diameter footprints separated by ~25 m along- and ~9 m across-track. Only 

LVIS footprints that were coincident with field study plots were selected for this 

study. The mean number of LVIS footprints in each plot was approximately 8.  

  

Lidar-Derived Vertical Canopy Profiles 

The signal digitized by LVIS is a waveform that relates to the vertical 

distribution of intercepted canopy and ground surfaces (in 30 cm vertical bins). 

As such, LVIS waveforms from within each plot were used as one type of 

vertical canopy profile. In this case, all of the lidar waveforms within a plot were 

summed to produce a plot-level "average waveform" with which to compare to 

field-derived vertical canopy profiles from each plot.   

Lidar waveforms have also been transformed in previous studies to 

account for the attenuation of the lidar energy as the laser pulse travels through 
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the canopy (Lefsky 1997, Lefsky et al. 1999a, Lefsky et al. 1999b, Means et al. 

1999, Harding et al. 2001). Because some of the laser energy at the top of the 

canopy is reflected or absorbed, there will be less energy available lower into 

the canopy. Thus, the MacArthur-Horn technique (MacArthur and Horn 1969, 

Aber 1979b), which was developed for field studies to produce foliar height 

profiles from uplooking foliar distance measurements, was modified to 

transform the waveform into a relative canopy height profile (See Figure 3.3; 

and Harding et al. 2001 for more details).  

Canopy height profiles (CHPs) were then calculated for all shots in each 

plot based on techniques described in (Harding et al. 2001). In this case, the 

CHPs were created with 180 30 cm bins. Plot-level CHPs were then derived by 

summing all individual CHPs within each plot.      

Quantile metrics were then calculated for each average lidar profile 

similar to the technique described above for field profiles (Figure 3.3). The 

metrics represent the height below which X% of: (a) the total energy of the 

waveform (including the canopy and ground returns), or, (b) the canopy height 

profile are located. In this case the denotations are: "HENGX" for the height of 

X% the waveform energy, and "CHPX " for the height at which X% of the CHP 

is located below. For this study, the 1, 5, 10, 25, 50, 75, 90,95 and 99 quantile 

metrics were calculated for each type of lidar profile. The only exception to the 

above naming scheme is for the height of 50% of the waveform energy, which 

is referred to as the height of median energy (HOME) to correspond to a 

previous study (Drake et al. In press). Again, for simplicity, not all metrics are 

shown in the results section.      
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25 m 

Fraction of 
Plant Area 

95% Canopy 
Height Profile 
(CHP95) 

 50% Canopy 
Height Profile 
(CHP50) 

b)     Canopy Height 
Profile

Return Intensity 

a)  Lidar  Waveform

 Height of 95% 
energy (HENG95)

 Height of 
median 
energy 
(HOME)

 Height of 5% 
energy (HENG05)

5% Canopy Height 
Profile (CHP05)

Figure 3.3 Derivation of vertical canopy profiles from lidar data. 

Coincident footprints from each plot were used both as: a) waveforms

directly from the LVIS instrument and b) canopy height profiles that 

are derived using a exponential transformation of return energy in the 

waveform as described in Harding et al. (2001). Quantiles (e.g., 

HOME, CHP50) were calculated from both lidar vertical canopy 

profile formats.     
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Analysis  

We first examined the relationship between metrics from field-derived vertical 

canopy profiles and the estimated aboveground biomass (EAGB). Profile 

metrics, along with the mean and maximum stem heights, for each plot were 

incorporated into a stepwise regression procedure to predict EAGB. The best 

single and multiple-term relationships were identified. These relationships were 

also used as a baseline for comparisons against the lidar-EAGB relationships.        

 To compare field- and lidar-derived vertical canopy profiles we first 

examined the relationships between quantile metrics from field- and lidar-

derived vertical canopy profiles. Initially, complimentary metrics from both lidar 

and field profiles were compared. For example the correlation of the 75% metric 

for both lidar (CHP75 and HENG75) and field (FCV75) was examined using the 

metrics from all plots. Next the mean difference for each metric was analyzed. 

This was calculated for each metric by subtracting the lidar metric (e.g., 

HENG25) from the corresponding field metric (FCV25), and then taking the 

mean of the differences for all plots. For example, if the mean of all FCV75-

HENG75 values was a positive number then the lidar metric is "lower on 

average" than the corresponding field metric.     

Next, we analyzed the relationship between the entire lidar- and field-

derived vertical canopy profiles. The correlation of individual lidar and field 

profiles was examined for each plot. To do this, the untransformed lidar 

waveforms were also converted into 180 (30 cm) bin profiles. Because the raw 

waveform bin size is 30 cm, this simply involved cutting the waveform at ground 

level, and at 54 m (bin 180) above ground level. In addition, all untransformed 
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lidar and field profiles were normalized to compensate for differences in units 

(i.e., crown area and digitizer counts). We initially examined the correlation of 

complete average lidar profiles and corresponding field profiles. However, 

whereas field profiles are only from the top of the highest canopy to the bottom 

of the lowest crown, lidar profiles are continuous from the canopy top to the 

ground. We therefore, cut the portion of the lidar profile that was below the field-

measured lowest live branch and reexamined the correlation between lidar and 

field profiles. Quantile metrics were not, however, recalculated for the cut lidar 

profiles.      

As a final comparison of field and lidar profiles, we performed a 

goodness-of-fit analysis between lidar and field-based vertical canopy profiles. 

We measured the goodness-of-fit as the fraction of area shared by two types of 

normalized average profiles for each plot.  The area overlap index (AOI) was 

calculated from the area of both average profiles that overlaps divided by the 

total area of both profiles. Statistical significance of differences between lidar 

and field profiles was then assessed by randomization of subplot-level profiles 

(e.g., individual lidar footprints or crown volume distributions from 25 m 

diameter circular subsets within each plot). The normalized subplot-level 

profiles from lidar and field methods were first pooled together. Then AOI 

between the observed average vertical profiles were compared with AOI of 

average profiles from 999 pairs of subsets, composed of random partitions of 

subplot lidar and field data from within the same larger plot. If the “actual” AOI 

(i.e., between average lidar- and field-derived profiles) was less than all but 49 
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or fewer AOI from the randomization procedure then the average profiles were 

considered significantly different (α=0.05)        

Lastly, we identified the best linear combination of lidar profile metrics for 

predicting EAGB. Metrics from lidar profiles in all plots were used in a stepwise 

regression procedure to predict EAGB, and the best single and multiple-term 

relationships were identified. We then compared these relationships with 

corresponding relationships between EAGB and metrics from field profiles. 

  

Results 

Field-derived Vertical Canopy Profiles 

Nearly all of the metrics listed in Table 3.2 from field-derived vertical 

canopy profiles and the maximum and mean stem height increase from 

agroforestry to secondary forest, and from secondary to primary forest. The 

notable exception is for FCV05, which is higher in agroforestry plots than in 

secondary plots, but is still highest in primary forest plots. These trends are 

apparent in Figure 3.4 where the narrow distribution of crown volume in the 

uniform agroforestry plots is all higher aboveground than the lower portion of 

canopy materials in the secondary (and in some cases primary) forest plots.  

 

Field-derived Vertical Canopy Profile Metrics vs. EAGB 

The increase in most field profile metrics parallels an increase in EAGB 

from agroforestry to primary forest plots (Table 3.2). The range of EAGB varies 

greatly within secondary and primary forest plots. Within secondary plots large, 

remnant stems (i.e., those not cleared when the area was originally deforested) 
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1836Number of plots

173 (113- 206)124 (70- 193)29 (28- 48)EAGB (Mg/ha)

31.7 (25.0- 38.3)25.0 (24.0- 34.3)9.7 (9.5- 11.7)FCV95* (m)

22.7 (19.0- 29.3)20.7 (18.0- 26.3)9.2 (9.0- 11.0)FCV75* (m)

16.9 (14.3- 22.0)16.7 (12.0- 20.0)8.4 (8.0- 10.3)HMFCV* (m)

12.3 (11.0- 15.7)12.0 (8.7- 14.7)7.6 (7.3- 9.7)FCV25* (m)

8.0 (7.0- 9.3)6.0 (5.3- 9.3)7.0 (6.7- 9.0)FCV05* (m)

16.9 (15.8- 19.1)14.3 (11.6- 21.0)9.4 (9.2- 11.4)Mean Stem Height (m)

40.0 (31.7- 47.0)34.6 (32.5- 42.4)10.4 (10.4- 11.9)Max Stem Height (m)

Field Variable PrimarySecondary Agroforestry

1836Number of plots

173 (113- 206)124 (70- 193)29 (28- 48)EAGB (Mg/ha)

31.7 (25.0- 38.3)25.0 (24.0- 34.3)9.7 (9.5- 11.7)FCV95* (m)

22.7 (19.0- 29.3)20.7 (18.0- 26.3)9.2 (9.0- 11.0)FCV75* (m)

16.9 (14.3- 22.0)16.7 (12.0- 20.0)8.4 (8.0- 10.3)HMFCV* (m)

12.3 (11.0- 15.7)12.0 (8.7- 14.7)7.6 (7.3- 9.7)FCV25* (m)

8.0 (7.0- 9.3)6.0 (5.3- 9.3)7.0 (6.7- 9.0)FCV05* (m)

16.9 (15.8- 19.1)14.3 (11.6- 21.0)9.4 (9.2- 11.4)Mean Stem Height (m)

40.0 (31.7- 47.0)34.6 (32.5- 42.4)10.4 (10.4- 11.9)Max Stem Height (m)

Field Variable PrimarySecondary Agroforestry

Table 3.2 Field characteristics by landcover type. For field-derived vertical 
canopy profile metrics and field estimated aboveground biomass (EAGB) the 
first value is the median, and the values in parentheses are the range of 
values from all plots within each type.     

* Quantiles from field-estimated crown volume distribution (see Figure 3.2 and text for details). 
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Figure 3.4 Histograms of stem diameters, estimated stem biomass 

and stem height, and crown volume distributions from an example plot 

within three different landcover types. For crown volume distributions, 

the height of median crown volume (HMFCV) is represented by the 

dotted line.   
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may comprise over 15% of the basal area in secondary forest areas 

(Guariguata et al. 1997), and therefore contribute a large proportion to the 

overall plot-level aboveground biomass. These remnant stems also increase 

both height metrics (e.g., maximum height) and upper profile metrics (e.g., 

FCV95).  

As a result the best single predictor of EAGB (R2=0.88) across this wide 

range of conditions is a metric from the upper portion of the profiles, FCV95 

(Table 3.3, equation 1). The relationship between this field metric and EAGB is 

non-asymptotic across all land-use, successional and environmental conditions 

sampled at La Selva (Figure 3.5). The standard error (RMSE) for this single-

term relationship is 21.65 Mg/ha. 

If two or more metrics were used in a multiple regression to predict 

differences in EAGB across all plots, the R2 values increased further.  With 4 

metrics from the field vertical canopy profile, approximately 94% of the variation 

in EAGB was explained. In addition, the RMSE dropped to approximately 16 

Mg/ha, which is approximately 10% of the mean EAGB value for primary forest 

plots at La Selva. For the multi-term equations, the metrics that were the best 

predictors of EAGB (Table 3.3.) were from both the upper and lower portions of 

the field profile (e.g., FCV90 and FCV10). Thus, differences in both the upper 

and lower portions of canopy profiles are highly related to variation in 

aboveground biomass in this Neotropical landscape.    
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18.00.92(2) Y = 3.9*FCV99+ 15.9*FCV10- 126.6

17.30.93(3) Y = 7.7*FCV99+20.2*FCV10- 5.71*FCV90-
141.7

16.00.943(4) Y = 7.6*FCV99+ 46.0*FCV10- 7.2*FCV90-
24.6*FCV05- 144.7

21.70.88(1) Y= 6.2*FCV95- 28.5

RMSE 
(Mg/ha)

R2Equation

18.00.92(2) Y = 3.9*FCV99+ 15.9*FCV10- 126.6

17.30.93(3) Y = 7.7*FCV99+20.2*FCV10- 5.71*FCV90-
141.7

16.00.943(4) Y = 7.6*FCV99+ 46.0*FCV10- 7.2*FCV90-
24.6*FCV05- 144.7

21.70.88(1) Y= 6.2*FCV95- 28.5

RMSE 
(Mg/ha)

R2Equation

Table 3.3 Regression equations for field-estimated vertical canopy profile 
metrics vs. estimated aboveground biomass (EAGB). Data is from all plots 
(n=26) sampled at La Selva Biological Station.     
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Figure 3.5 Predicted vs. field estimated aboveground biomass 

(EAGB) from all plots at La Selva. The predicted EAGB values are 

from a single-term regression (Table 3.3, equation 1) using the 

FCV95 metric from field-derived vertical canopy profiles. 
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Lidar-derived Vertical Canopy Profiles 

In general, metrics from lidar vertical canopy profiles (waveforms and 

CHPs) also increase from agroforestry to secondary forest, and from secondary 

to primary forest (Table 3.4). As is the case for the field metric FCV05, the 

exception in this trend is the transformed lidar metric CHP05, which is higher in 

agroforestry and primary forest plots than in secondary plots. In contrast, the 

corresponding untransformed waveform metric, HENG05, does increase from 

agroforestry to primary forest. HENG05 is negative in several plots, because 

the waveform is the entire lidar signal, including the ground return. In many 

cases (particularly in agroforestry plots) a large portion of the overall energy is 

in the lower portion of the last gaussian pulse (i.e., below the ground reference 

level which is the peak of the last gaussian pulse). These trends can be seen in 

Figure 3.6 where there is an increase in the height of lidar profile metrics from 

agroforestry to primary forest plots. 

 

Lidar- vs. Field-derived Vertical Canopy Profile Metrics 

 The values for most of the lidar vertical canopy profile metrics (Table 3.4) 

increase from agroforestry to primary forest plots, and therefore follow a similar 

trend to the corresponding field metrics (Table 3.2). The values for upper 

metrics from both waveforms and CHPs closely mirror equivalent metrics in the 

field crown volume distributions (e.g., FCV95 vs CHP95). In contrast the 

differences between the lower field and lidar quantiles (e.g., FCV05 vs. CHP05) 

are greater.
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23.4 (18.3-37.1)21.2 (21.0- 28.5)11.5 (8.0- 13.1)CHP95** (m)

27.4 (24.6- 37.5)22.8 (20.6- 34.5)10.2 (5.7- 12.8)HENG95* (m)

23.9 (19.6- 33.7)18.2 (14.0- 25.5)7.8 (2.1- 9.7)HENG75* (m)

21.6 (12.0- 28.4)16.2 (9.0- 17.6)4.8 (0.3- 7.4)HOME* (m)

16.6 (9.9- 21.2)11.5 (4.7- 11.7)0.5 (-1.5- 3.8)HENG25* (m)

3.4 (-1.2- 7.1)0.3 (-1.8- 1.3)-1.7 (-3.0 – (-1.3))HENG05* (m)

23.4 (18.3 –31.1)17.9 (15.4- 22.1)10.0 (6.7- 12.3)CHP75** (m)

18.6 (13.7- 23.9)13.0 (11.1- 14.0)8.5 (5.3- 10.4)CHP50** (m)

11.1 (8.2- 14.1)8.3 (7.3- 8.5)6.7 (4.3- 8.0)CHP25** (m)

3.9 (2.5- 6.1)3.3 (3.1- 3.9)3.9 (3.0- 4.4)CHP05** (m)

Profile Metric PrimarySecondary Agroforestry

23.4 (18.3-37.1)21.2 (21.0- 28.5)11.5 (8.0- 13.1)CHP95** (m)

27.4 (24.6- 37.5)22.8 (20.6- 34.5)10.2 (5.7- 12.8)HENG95* (m)

23.9 (19.6- 33.7)18.2 (14.0- 25.5)7.8 (2.1- 9.7)HENG75* (m)

21.6 (12.0- 28.4)16.2 (9.0- 17.6)4.8 (0.3- 7.4)HOME* (m)

16.6 (9.9- 21.2)11.5 (4.7- 11.7)0.5 (-1.5- 3.8)HENG25* (m)

3.4 (-1.2- 7.1)0.3 (-1.8- 1.3)-1.7 (-3.0 – (-1.3))HENG05* (m)

23.4 (18.3 –31.1)17.9 (15.4- 22.1)10.0 (6.7- 12.3)CHP75** (m)

18.6 (13.7- 23.9)13.0 (11.1- 14.0)8.5 (5.3- 10.4)CHP50** (m)

11.1 (8.2- 14.1)8.3 (7.3- 8.5)6.7 (4.3- 8.0)CHP25** (m)

3.9 (2.5- 6.1)3.3 (3.1- 3.9)3.9 (3.0- 4.4)CHP05** (m)

Profile Metric PrimarySecondary Agroforestry

Table 3.4 Lidar vertical canopy profile metrics by landcover type. The 
first value is the median, and the values in parentheses are the range of 
values from all plots within each landcover type.     

*Quantiles from untransformed waveforms  (see Figure 3 and text for details). 
** Quantiles from “canopy height profile” transformation of waveforms (see Figure 3 and text for details). 
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Figure 3.6 Lidar-derived vertical canopy profiles (waveforms and 

CHPs) from an example plot within three different landcover 

types. The median or 50% height for both the waveforms (HOME) 

and the CHP (CHP50) is represented by the dotted line.    
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 To further examine the relationship between corresponding lidar and field 

profile metrics, a simple linear regression analysis was performed. The 

regression results (Figure 3.7 and Table 3.5) illustrate that metrics from both 

lidar and field profiles are all highly correlated, except for the lower metrics 

(e.g., FCV05 vs CHP05). In all but one case, the R2 and RMSE values show the 

untransformed waveform metrics are more similar to the field profile metrics 

than the CHP metrics (Table 3.5 A., Figure 3.7). In most cases the RMSE 

values on the waveform metric equations are less than 12% of the median 

value of the corresponding field metric, and are less than 14% of the median 

value in the CHP metric equations.   

In most cases, the mean of differences between lidar and field metrics is 

less than 2 m (Table 3.5 B.). Again the exception is for the lowest profile metric 

where the mean difference is approximately 6 m for the waveform metric 

(FCV05-HENG05) and 4 m for the CHP metric (FCV05-CHP05). This illustrates 

that the bottom portion of the lidar profiles are typically lower than the field 

profiles. The most likely explanation for this is that whereas the crown volume 

distributions start with the lowest branch on a measured tree (e.g., a tree over 

10 cm dbh in primary plots), lidar profiles are continuous from the top of the 

canopy to the ground (and below for waveforms as mentioned above). As a 

result this difference is to be expected. 

    

Lidar- vs. Field-derived Vertical Canopy Profiles 

There is a fairly good qualitative agreement between lidar- and field-

derived vertical canopy profiles. Both average waveforms and average CHPs 
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Figure 3.7 Relationships between corresponding metrics derived 

from field (y-axis) and lidar (X-axis) vertical canopy profiles. A) 

Relationships between two metrics from lidar waveforms (HOME, 

HENG95) and the corresponding field profile metrics (HMFCV, 

FCV95) B) Relationships between two metrics from lidar CHPs 

(CHP50, CHP95) and the corresponding field profile metrics 

(HMFCV, FCV95). For all plots, the dotted line represents the 

regression line. See Table 3.5 for R2, RMSE and mean difference 

values.   
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Table 3.5 Comparison of corresponding metrics from field- and lidar-
derived vertical canopy profiles. A) Regression results from field and 
associated lidar metrics (e.g., FCV25 vs. HENG25 or CHP25). R2 and 
RMSE (parentheses) values are listed. B) Mean difference values (field 
minus lidar) for each metric.   

A 

B 
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tend to follow a similar overall pattern as the field-derived vertical canopy 

profiles. With the exception of untransformed average waveforms in primary 

forest areas, lidar and field vertical canopy profiles tend to have their largest 

peaks at approximately the same height. In addition, the canopy heights (i.e., 

the top of the profile) from both lidar and field techniques are also closely 

related in all landcover types.    

 Lidar and field profiles in most plots are also highly correlated (Table 

3.6). Waveforms and field profiles from secondary forest plots are the most 

highly correlated, followed by primary forest and agroforestry plots. In contrast, 

CHPs and field profiles from primary forest plots are the most highly correlated, 

followed by secondary forest and agroforestry plots.  

   In both agroforestry and primary plots, CHPs are more highly correlated 

than waveforms with field-derived vertical canopy profiles. In secondary forest 

plots, however, untransformed waveforms were more highly correlated than 

CHPs with field profiles. This same general trend can be seen in Figure 3.8, 

where removal of the ground return in agroforestry plots, and where 

transformation of the lower portion of the profile in primary forest plots allows 

the CHP to more closely resemble the field profiles. Similarly, because the field 

vertical canopy profiles are from the top of the canopy to the bottom of the 

lowest live crown for trees over 10 cm stem diameter (in primary plots), when 

the correlation analyses are only performed on the portion of both profiles within 

this range for each plot, there is a slight improvement in the correlations (Table 

3.6 B). 
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Table 3.6 Correlation between lidar and field-based vertical canopy 
profiles. A) Correlation of lidar waveforms or CHP vs. crown volume 
distributions. B) Correlation using portion of lidar profiles that are 
above the lowest live crown measured in each plot. For all 
comparisons, median correlation coefficients between lidar and field 
data for plots within each landcover type are listed first, followed by 
the observed range of coefficients in that type.  
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Figure 3.8 Field (solid) and lidar (dashed line) vertical canopy profiles from 

an example plot within three different landcover types. All profiles have been 

normalized as a fraction of their total value (e.g., fraction of total crown 

volume).   
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The results from goodness-of-fit analysis of lidar and field profiles follow 

similar trends (Table 3.7). The area of overlap between average waveform and 

field profiles (as characterized by the area overlap index, AOI) is highest in 

secondary forests, followed by primary forests and agroforestry areas. The AOI 

between the average CHP and field profiles was greatest in primary forest plots, 

followed by secondary forest and agroforestry plots.     

 Although both correlation coefficients (Table 3.6) and AOI (Table 3.7) 

between lidar and field profiles are generally quite high, in most cases the 

average profiles are significantly different (Table 3.7). In other words, the AOI 

between average lidar and field profiles for a given plot are typically smaller 

than the AOI from all 999 pairs of subsets composed of random partitions of 

sub-plot level field and lidar profiles. For example, in the agroforestry areas, 

lidar and field profiles in five out of six plots were significantly different. 

Similarly, average lidar profiles were significantly different from field profiles in 

17 out of 18 primary forest plots. However, average waveforms were 

significantly different from field profiles in only one out of three secondary plots, 

whereas average CHPs were all significantly different from field profiles in 

secondary forest areas.            

 In summary, in many cases there are significant differences between 

profiles derived using lidar and field techniques. Nonetheless, the upper 

quantile metrics from lidar (e.g., HENG95 or CHP95) and field (e.g., FCV95) 

techniques are highly correlated. In addition, the mean differences between 

many of the upper metrics are less than 2 m. As such lidar data can resolve 



 109

 

 

 

 

 

 

0.75****
(0.59-0.86)

0.73***
(0.63-0.83) 

0.38*
(0.20-0.48)

CHP

0.64**** 
(0.40-0.80) 

0.82**
(0.77-0.86)

0.27* 
(0.07-0.42)

Waveform

PrimarySecondary Agroforestry

0.75****
(0.59-0.86)

0.73***
(0.63-0.83) 

0.38*
(0.20-0.48)

CHP

0.64**** 
(0.40-0.80) 

0.82**
(0.77-0.86)

0.27* 
(0.07-0.42)

Waveform

PrimarySecondary Agroforestry

Table 3.7 Goodness-of-fit between lidar and field-based vertical 
canopy profiles, measured as the fraction of area shared by two types 
of normalized average profiles for each plot.  The area overlap index 
(AOI) was calculated from the area of both average profiles that 
overlaps divided by the total area of both profiles. Statistical 
significance of differences between lidar and field profiles was 
assessed by randomization.  Subplot data from field and lidar methods 
were pooled. Then AOI between the observed average vertical profiles 
were compared with AOI of average profiles from 999 pairs of subsets, 
composed of random partitions of subplot lidar and field data from 
within the same larger plot (see text). For all comparisons, mean AOI 
between lidar and field data for plots within each landcover type are 
listed first, followed by the observed range of AOI values in that type.  

*Average profiles from 1 out of 6 plots were not significantly different (p < 0.05) 
**Average profiles from 2 out of 3 plots were not significantly different (p < 0.05) 
***Average profiles for all plots were significantly different (p < 0.05)   
****Average profiles from 1 out of 18 plots were not significantly different (p < 0.05) 
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differences in canopy structure across this Neotropical landscape, without 

equivalence to field profiles.   

              

Lidar-derived Vertical Canopy Profile Metrics vs. EAGB 

Metrics from lidar vertical canopy profiles follow a similar trend to metrics 

from field profiles: all lidar metrics except CHP05 (Table 3.4) are greater in plots 

with greater biomass (Table 3.2). As a result, lidar metrics are highly correlated 

with EAGB across all of the plots sampled (Table 3.8). The best single predictor 

of EAGB was the height of median energy (HOME) metric with an R2 value of 

0.87 and an RMSE of approximately 23 Mg/ha (Table 3.8, equation 1). Although 

this quantile metric differs from the best single predictor of EAGB from field 

profiles (FCV95), the level of variation that is explained by both metrics is 

approximately equal (88% vs. 87%, Tables 3.3 and 3.8). The relationship is also 

non-asymptotic across all land-use, successional and environmental conditions 

at La Selva (Figure 3.9).   

When two or more metrics are used in a multiple linear regression, the 

R2 values increase (Table 3.8, equations 2-4), as with multiple regression 

results from field metrics. For example with 4 metrics from the lidar profiles, the 

R2 values are approximately 0.94, and the RMSE is approximately 16 Mg/ha 

(again, approximately 10% of the mean EAGB value for primary forest plots at 

La Selva). Another similarity with field equations is that the metrics that were 

the best predictors of EAGB were from both the upper and lower portions of the 

canopy (e.g., HENG10 and HENG90). However, one key difference between 

field and lidar equations is that the median metric (HOME) was in every lidar 
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22.60.87(1) Y = 6.6*HOME- 24.8

16.10.94Y = 5.2*HOME+ 10.5*HENG10-
12.5*HENG25 –3.6*HENG90+49.8

18.20.92Y = 8.0*HOME+ 8.4*HENG10-
9.8*HENG25+ 64.4

21.30.88Y = 6.2*HOME-
0.75*HENG10+26.5

RMSE 
(Mg/ha)

R2Equation
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12.5*HENG25 –3.6*HENG90+49.8
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Table 3.8 Regression equations for lidar vertical canopy 
profile metrics vs. estimated aboveground biomass 
(EAGB). Data is from all plots (n=26) sampled at La 
Selva Biological Station.      
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Figure 3.9 Predicted vs. field estimated aboveground biomass 

(EAGB) from all plots at La Selva. The predicted EAGB values are 

from a single-term regression (Table 3.8, Equation 1) using the 

HOME metric from lidar-derived vertical canopy profiles. 
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equation. Another important result is that for all equations, metrics from the 

untransformed waveforms were chosen over CHP metrics through the stepwise 

multiple regression analysis.      

 

Discussion 

Relationship between Field-derived Vertical Canopy Profiles and 

Biomass 

 The first portion of this research focused on the correlation between 

metrics from field-derived vertical canopy profiles and the total aboveground 

biomass. The strong relationship between single (e.g., FCV95) or multiple 

metrics from the field profiles and EAGB illustrates the value of quantifying 

variation in vertical canopy structure. The differences in the relative distribution 

of crown volume are strongly correlated with different EAGB levels across a 

wide variety of landcover types at La Selva Biological Station, including old-

growth forest areas. 

Some of the potential reasons that vertical canopy profiles are highly 

correlated with EAGB are illustrated in Figure 3.4. Although the density of stems 

in agroforestry and secondary forest plots are much higher than in primary 

forest plots, it is the relatively few, very large canopy-forming individuals in 

primary forest plots that contribute heavily to the total aboveground biomass in 

each plot. In addition, these large individual stems constitute the bulk of the 

upper portion of the vertical canopy profiles in primary forest plots. In contrast, 

the relatively few remnant stems in secondary forest areas create only a small 
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upper mode in both the vertical canopy profile and the distribution of stem 

heights (Figure 3.4).    

Similarly, within primary forest plots, the death of individual trees, and 

poor micro-environmental conditions can lead to lower-stature canopies (e.g., 

the low end of the range for FCV95 in Table 3.2), with lower total EAGB (e.g., 

one primary forest plot had an EAGB of only 113 Mg/ha, Table 3.2). As a result, 

upper quantile metrics (e.g. FCV95) from the field-derived vertical canopy 

profiles are highly correlated with overall EAGB across this landscape.  

The relationship between metrics from field-derived vertical canopy 

profiles and aboveground biomass is important because it illustrates that height 

and canopy structure are important indicators of current ecosystem state. More 

importantly, metrics that relate to differences in the relative vertical distribution 

of canopy structure are responsive to variation in total aboveground biomass 

across the entire range of conditions sampled. It is reasonable that vertical 

canopy structure should be correlated to aboveground biomass in forest 

ecosystems, however the relationship between canopy metrics (e.g., crown 

volume metrics) and aboveground biomass is not well established for most 

forests. Most field studies have instead focused on the relationship between the 

height and biomass of individual stems, and not the relationship between 

vertical canopy structure and biomass at a plot (e.g., 0.5 ha) level. Because 

lidar instruments are sensitive to variation in canopy structure in temperate 

forests (Lefsky et al. 1999a, Harding et al. 2001), there is a need to examine the 

relationships between canopy structure and aboveground biomass from a field 

perspective as well. Our results suggest that differences in the relative vertical 
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distribution of canopy structure provide an important means to characterize the 

current state of Neotropical ecosystems.         

 

Relationship between Complete Field- and Lidar-derived Vertical 

Canopy Profiles 

We have demonstrated that metrics from field-derived canopy profiles 

are correlated with EAGB at La Selva. Next we examined the sensitivity of lidar 

data to differences in canopy structure across different landcover types (e.g., 

agroforestry, secondary and primary forest). Although field and lidar profiles are 

correlated and have high AOI (Tables 3.6 and 3.7 respectively) in many cases 

there are significant differences between field and lidar profiles on a plot-to-plot 

basis (Table 3.7, Figure 3.8). Similarly, Harding et al. (2001) also found that 

lidar CHPs and field profiles (derived from ground-based sightings to plant 

intercepts) had qualitative similarities but were statistically different.  

To a certain degree, the differences between entire profiles from lidar 

and field techniques found in this study should be expected. The effects of 

modeling stem heights and crown dimensions (Table 3.1) for many stems, as 

well as the assumption that crowns are filled cylinders are simplifications. In 

reality, crowns are highly irregular in shape, and crown materials are often 

clumped. Whether these model assumptions lead to biases in the field profiles 

in relation to the true distribution of crown volume is uncertain, however they will 

certainly contribute to differences between field and lidar profiles.  

Even if the forest structure in each plot were destructively sampled to 

provide an actual crown volume distribution, there would still likely be 
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differences between these profiles and lidar profiles. First, lidar instruments 

sample the entire distribution of canopy materials from the highest crown to the 

ground, whereas the field profiles developed in this study are only from the 

highest crown to the base of the lowest crown sampled. Second, trees that 

were used to create the crown volume distribution were only a portion of the 

plants that are found in each plot. Trees that were under 10 cm diameter (5 cm 

in secondary plots) were not included. As a result the field profiles do not 

include many of the smaller trees that also contribute to the lidar profiles.     

A third cause for differences between lidar and field profiles is that the 

lidar signal is affected by the decreasing total amount of energy as the pulse 

travels lower into the canopy. For example in Figure 3.8, the upper portion of 

the lidar waveform is higher than the corresponding field-derived profile in a 

primary forest plot. Although a modified MacArthur-Horn transformation of the 

signal may make intuitive sense to compensate for this problem, there are still 

important assumptions (e.g., horizontal homogeneity or no clumping of canopy 

materials) that may create other biases (Lefsky et al. 1999a, Means et al. 1999, 

Harding et al. 2001). In this case, the transformation of the waveforms into 

CHPs did increase the correlation and goodness-of-fit values (Tables 3.6 and 

3.7) with field profiles in primary forest and agroforestry areas compared with 

the untransformed waveforms, but there were still the same number of 

significant differences between field and lidar profiles. The correlation and 

goodness-of-fit of CHP and field profiles in secondary forest areas were lower 

than the untransformed waveform values. Further, all of the secondary forest 

plots had significant differences after the transformation, whereas the average 
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waveform and field profiles from two of the three secondary forest plot areas 

were not significantly different. Thus, it is unclear if the modified MacArthur-

Horn transformation of the lidar signal improves representation of canopy 

structure in this Neotropical landscape.   

Although significant differences exist between lidar and field profiles, 

there are also important qualitative similarities (Figure 3.8).  For example, both 

lidar and field profiles from different landcover types are distinct. (To test if lidar 

data are sensitive to differences in canopy structure between different 

landcover types we performed an additional goodness-of-fit analysis where we 

compared  “type-level” average waveforms or CHPs produced from all 

individual waveforms or CHPs in one landcover type (e.g., primary forest) with 

the corresponding type-level profile from another landcover type (e.g., 

secondary forest). To test for significance we compared the AOI from these 

type level comparisons with the AOI from 999 pairs of subsets where all 

individual profiles (i.e., CHP or waveforms) from both landcover types were first 

pooled and then were randomly partitioned to create new “synthetic type-level” 

profiles.) In all cases, the lidar profiles from each landcover type were 

significantly different (p< 0.005) from all other landcover types. This shows that 

large-footprint lidar instruments are sensitive to important differences in vertical 

canopy structure in this Neotropical forest, and can thus be used to differentiate 

landcover types. 
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Relationship between Metrics from Field- and Lidar-derived Vertical 

Canopy Profiles 

Although significant differences exist between the complete normalized 

vertical canopy profiles from lidar and field techniques, metrics from both field 

and lidar profiles are highly correlated (Table 3.5), and the mean differences 

between corresponding upper quantile metrics (e.g., FCV95 vs. HENG95) are 

all small (< 2m). This demonstrates that lidar is sensitive to important 

differences in canopy structure both within and across landcover types.     

Comparisons of the quantile metrics derived from lidar and field profiles 

are not as strongly influenced by subtle differences in the overall spread of the 

profiles as are goodness-of-fit comparisons of the complete profiles. As such 

although there are obvious differences in the bottom-most metrics (e.g., FCV05 

vs. HENG05, Table 3.5), the upper metrics from both lidar and field profiles are 

closely related. This is important because upper quantile metrics from the field 

profiles (FCV95) were the best predictors of EAGB in this Neotropical 

landscape.         

 

Comparison of the Relationships between Field- and Lidar-derived 

Vertical Canopy Profiles and Biomass 

We found that metrics from lidar vertical canopy profiles are 

approximately as correlated with EAGB (Table 3.8) at La Selva as field profile 

metrics (Table 3.3). This shows that large-footprint lidar instruments are 

sensitive to variation in EAGB, despite the significant differences between some 

lidar and field profiles.      
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In a related study (Drake et al. In press) we found that mean canopy 

height and the height of median energy from lidar waveforms were highly 

correlated with EAGB at La Selva. This extension of that earlier work provides a 

more thorough examination of the relationship between the complete lidar 

profile and EAGB, and also allows for a comparison with similar field 

techniques.    

 Although the best single predictor of EAGB from field (FCV95) and lidar 

(HOME) profiles differs, if the corresponding lidar metric is used instead (i.e., 

HENG95) the relationship is still quite strong (R2=0.83). The HOME metric may 

be more strongly influenced by the amount of lidar energy that penetrates to the 

ground, and therefore will be much lower in areas with more open canopy 

conditions. For example in the agroforestry areas HOME is much lower than 

than HENG95 (Table 3.4 and Figure 3.6) caused primarily by the presence of 

strong ground returns. This may help to explain why metrics from 

untransformed waveforms were selected over CHP metrics in a stepwise 

multiple regression analysis (Table 3.8). Because the ground return is 

redistributed to the canopy return during the modified MacArthur-Horn 

technique (Harding et al. 2001), these metrics may not be sensitive to 

differences in both canopy structure and openness in different landcover types. 

In any case, waveform transformation did not improve estimates of biomass.             

 

Conclusions 

Although past research has examined changes in field-derived vertical 

canopy profiles (e.g., foliar height profiles) through different stages of forest 
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succession (Aber 1979b, a, Brown and Parker 1994, Pare and Bergeron 1995), 

the relationship between metrics from field profiles and biomass has generally 

not been examined, primarily because vertical canopy profiles are difficult to 

construct. Because large-footprint lidar instruments can rapidly record vertical 

canopy profiles over large forested areas in contrast to labor-intensive field 

methods, they represent a breakthrough in the remote sensing of forest canopy 

structure with great potential for large-scale land surface characterization.  

In this study we found that lidar data are sensitive to important 

differences in canopy structure over a wide range of conditions (i.e., from young 

secondary forests to primary tropical rainforests). We also showed that lidar 

profiles (even with a MacArthur-Horn transformation) are not equivalent to field 

profiles of the vertical distribution of crown volume. Nonetheless, metrics from 

untransformed lidar profiles are as good as metrics derived from field profiles 

for biomass estimation. Because changes in canopy structure are highly 

correlated with changes in aboveground biomass through time, lidar provides a 

new method for estimating carbon stocks in dense tropical forests. 

The remaining challenge is to explore the generality of the relationships 

between vertical canopy profiles and aboveground biomass in different forest 

ecosystems. For example, will the relationships developed at La Selva 

Biological Station, a tropical wet forest (Holdridge et al., 1971) also apply to 

tropical moist forests in the Amazon that may receive half of the La Selva 

rainfall totals? Our future work will test the generality of these relationships in 

other tropical regions and will develop new relationships in areas with different 

environmental conditions if necessary. This process will set the stage for using 
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global lidar observations from future spaceborne lidar instruments, such as the 

Vegetation Canopy Lidar (Dubayah et al. 1997), to estimate biomass in 

terrestrial ecosystems globally.     
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Chapter 4. Aboveground biomass estimation in closed canopy 

Neotropical forests using lidar remote sensing: Factors 

affecting generality of relationships 

 

Abstract 

Estimates of aboveground biomass provide critical information for modeling 

carbon dynamics in terrestrial ecosystems. Lidar remote sensing is an efficient 

method for estimating forest structural characteristics, such as aboveground 

biomass, because vertical forest structure is sampled. Previous studies have 

shown that canopy metrics from lidar data are highly correlated with 

aboveground biomass in a variety of closed-canopy forests, however the 

generality of these site-specific relationships has remained untested. In this 

study, we compare relationships between lidar canopy metrics and forest 

structural summaries such as aboveground biomass from (1) a tropical wet 

forest site (4200mm rain/yr) in Costa Rica and (2) across a series of tropical 

moist forest field sites spanning a rainfall gradient (2000-3000 mm rain/yr) in 

Panama.  

We found that in both regions lidar metrics were strongly correlated (R2: 

0.65-0.92) with forest structural summaries including mean stem diameter, 

basal area and aboveground biomass. We also showed that the relationships 

differed between these regions unless deciduousness of canopy trees in 

Panama was considered. Adjusting for leaf-drop removed statistically significant 

differences between the two regions in the relationships between a lidar metric 

and both mean stem diameter and basal area. The relationships between lidar 
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metrics and aboveground biomass, however, remained significantly different 

between the two study areas. This was primarily due to the different general 

allometric relationships used to estimate aboveground biomass in tropical wet 

forests and tropical moist forests. Future efforts should continue to examine 

climatic factors that may influence the generality of the relationships between 

lidar metrics and forest structural characteristics, and address the dearth of 

allometric data on the very large trees that can dominate the biomass of primary 

tropical forests.  

 

Introduction 

Aboveground biomass is the total amount of biological material (usually oven-

dried to remove water) present above the soil surface in a specified area. 

Because plant biomass is approximately 50% carbon, estimates of the total 

aboveground biomass in forest ecosystems are critical for carbon dynamics 

studies at multiple scales. These estimates provide initial conditions for 

ecosystem and biogeochemical models (e.g., Foley et al. 1996, Friend et al. 

1997, Hurtt et al. 1998, Potter 1999) that simulate the exchange of carbon and 

energy between the atmosphere and forest canopies through time.  Also 

estimates of carbon fluxes from deforestation, land cover change, and other 

disturbances depend on knowing the forest carbon stocks before disturbance 

(e.g., Houghton 1991).    

Forest canopy structure is highly dynamic both temporally and spatially. As 

forests recover from past disturbance events, there are typically changes in the 

horizontal (e.g., increases in basal area) and vertical (e.g., an increase in stand 



 124

height) distribution of forest structure that accompany an overall increase in 

aboveground biomass (Aber 1979a, Bormann and Likens 1979, Oliver and 

Larson 1990, Richards 1996). Additionally, variability in climatic (e.g., 

temperature, precipitation), edaphic, and other environmental factors (e.g., 

exogenous disturbances) result in differences in the spatial distribution of 

aboveground biomass and vertical canopy structure (e.g., Lieberman et al. 

1996, Yamakura et al. 1996, Laurance et al. 1999, Clark and Clark 2000). For 

example, in nutrient poor areas, forests typically are lower-stature and contain 

less aboveground biomass than in nutrient rich areas (Oliver and Larson 1990, 

Kimmins 1997). Furthermore, there is usually a connection between differences 

in vertical canopy structure and differences in biomass both through plant 

succession and across areas with contrasting environmental conditions.       

 The interconnection of vertical structure and aboveground biomass 

creates an opportunity to estimate aboveground biomass using lidar (light 

detecting and ranging) remote sensing. Lidar remote sensing has proven to be 

an efficient tool in the study of forest structure in a variety of forest 

environments (Nelson et al. 1988a, Magnussen et al. 1999, Means et al. 1999, 

Drake et al. In press). Because lidar instruments sample the vertical distribution 

of canopy (e.g., leaves and branches) and ground surfaces (Blair and Hofton 

1999, Dubayah and Drake 2000, Dubayah et al. 2000, Harding et al. 2001) and 

because of ecological and biomechanical links between biomass and vertical 

structure (King and Loucks 1978, Oohata and Shinozaki 1979, O'Neill and 

DeAngelis 1981, Givnish 1986, Franco and Kelly 1998), several studies have 

found a strong correlation between lidar metrics and aboveground biomass 
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(Nelson et al. 1988a, Lefsky et al. 1999b, Means et al. 1999, Drake et al. In 

press).  

In a recent study, Drake et al. (in press) found a strong, non-asymptotic 

linear relationship between canopy height metrics from lidar data and 

aboveground biomass in a dense, closed-canopy tropical forest. These results 

are encouraging because the broad scale estimation of aboveground biomass 

in tropical forests has been a difficult task. Previous remote sensing studies 

have shown that although passive optical and active radar sensors are sensitive 

to differences in aboveground biomass in young (0-15 years old) secondary 

forests, they are not as sensitive to differences in biomass in older, high-

biomass primary forest areas (e.g., Luckman et al. 1997, Nelson et al. 2000, 

Steininger 2000).    

The relationships that have been developed between lidar metrics and 

aboveground biomass (e.g., Means et al. 1999, Drake et al. In press) are site 

specific and there have been no attempts to compare relationships developed 

in areas with different environmental conditions. It is necessary to examine the 

generality of these relationships in different regions and biomes so that global 

terrestrial biomass estimates can be made using data from future airborne and 

spaceborne lidar instruments such as the Vegetation Canopy Lidar (Dubayah et 

al. 1997) and the Ice, Cloud, and Land Elevation Satellite (Schutz 1998). 

Our primary goal in this study is to examine the relationship between 

lidar metrics and aboveground biomass in closed-canopy Neotropical forest 

areas with different annual precipitation amounts. We focus on a tropical wet 

forest (sensu Holdridge et al. 1971) area in Costa Rica, and on a tropical moist 
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forest area in Panama that receives 50-75% less rainfall on average. Our first 

question is: do the relationships between lidar metrics and allometrically 

estimated aboveground biomass differ between the two study areas? Although 

biomass must be estimated from allometric relationships, basal area and mean 

stem diameter are precise, directly measured structural properties that are 

themselves often used to predict forest biomass (Brown 1997). Our second 

question therefore is: do relationships between lidar metrics and these directly 

measured forest structural characteristics (e.g., basal area) differ between the 

two study areas? We also are interested in looking for additional factors (e.g., 

environmental characteristics) that could help explain any differences in the 

relationships.      

 

Methods 
Study Areas 

This study concentrates on field and lidar data collected in two areas of 

Central America. The first study area is the La Selva Biological Station in the 

Atlantic lowlands of northeastern Costa Rica (McDade et al. 1994). La Selva is 

a 1540 ha research facility that is comprised of a mixture of primary and 

secondary tropical forest, agroforestry, and current or abandoned pasture areas 

(Figure 4.1). This area receives approximately 4200 mm rainfall per year 

(Sanford Jr. et al. 1994, OTS 2001) and is classified as “tropical wet forest” 

according to the Holdridge classification method (Holdridge et al. 1971). In this 

study we report data from several primary and secondary forest and 

agroforestry sites (Table 4.1).  
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Figure 4.1 Locator maps for two study areas. The first study area was 

La Selva Biological Station in Northeastern Costa Rica. La Selva is a 

1540 ha research facility comprised of pasture, agroforestry, secondary

and primary tropical wet forest areas. The second study area was 

around the former Canal Zone in Panama. A series of 19 1 ha primary 

and secondary forest plots were included, as well as data from the 50 

ha plot on Barro Colorado Island. The plots in Panama span a rainfall 

gradient from approximately 2000-3000 mm rainfall per year and are 

considered tropical moist forests. 
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* Estimated aboveground biomass (Mg/ha) using general equation for tropical moist forests in Brown (1997) 
** Including plots with trees whose diameters are greater than the largest tree used to develop the regression in Brown (1997)  
*** Estimated aboveground biomass (Mg/ha) using general equation for tropical wet forests in Brown (1997) 
**** Data collected as part of 1998 pre-launch VCL field campaign at La Selva 

Table 4.1  Forest structural summaries for all field data used in this study. 
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The second study area is centered on the Isthmus of Panama along the 

Panama Canal (Figure 4.1). This area spans a precipitation gradient ranging 

from approximately 2000 mm rainfall per year on the Pacific coast of Panama to 

3000 mm rainfall per year on the Atlantic side (Condit et al. 2000, Pyke et al. In 

press) and is classified as lowland “tropical moist forest” (Holdridge et al. 1971). 

Within this broad area, we focus on a series of 1 ha plots distributed throughout 

this precipitation gradient (Pyke et al. In press), and on the 50 ha research site 

on Barro Colorado Island (Condit 1998).  

 

Field data 

Field data collected as a part of different ongoing field studies at each 

study area was used in this work (Table 4.1). In the Costa Rica study area, field 

data were collected in 18 0.5 ha primary forest plots (Clark and Clark 2000), 

and 3 secondary forest areas of 14, 22 (Guariguata et al. 1997, Nicotra et al. 

1999) and 31 (Pierce 1992) years since abandonment as of March 1998. In 

addition, published data for 6 agroforestry plots (Menalled et al. 1998) were 

included among the Costa Rica study sites to correspond to an earlier study 

(Drake et al. In press).    

At the Panama study area, field data were collected in the 1 ha research 

plots near the Panama Canal  (the “Panama Canal plots” in Table 4.1, Pyke et 

al. In press). There were a total of 19 of these 1 ha plots that were sampled with 

the lidar instrument. Four of these sites are mature secondary forests, and the 

rest are primary forest (Table 4.1). The remaining field data in Panama were 

from the 50 ha plot on Barro Colorado Island (BCI, Condit 1998). In this case, 
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the 50 ha plot was first divided into 50 1 ha square plots. Next, the spatial 

correlation length of the lidar metrics used in this study (metrics discussed 

below) was determined to be approximately 90-100 m (Figure 4.2) so every 

other 1 ha plot was discarded to maintain relative independence of the 

independent variable in the regression analysis. This left a total of 25 1 ha plots 

from BCI in a checkerboard pattern.     

  Within each of these primary and secondary forest plots at both study 

areas, stem diameters were measured in a marked location either at breast 

height or, when necessary, above buttressing (see methods in Condit 1998, 

Clark and Clark 2000). In the present study only stems with diameters greater 

than or equal to 10 cm were included, except for the 14 and 22 year old 

secondary plots at La Selva where all stems greater than 5 cm diameter were 

also included to correspond with an earlier study (Drake et al. In press).  

Stem diameter measurements were used to estimate aboveground 

biomass values for each measured tree using general allometric equations 

(Brown 1997) for tropical wet forests (Equation 4.1) at the Costa Rica study 

area, and for tropical moist forests (Equation 4.2) at the Panama study area. 

Stem diameters were also used to calculate quadratic stem diameter (QMSD, 

Equation 4.3) and basal area (Equation 4.4) for each plot.      



 131

Figure 4.2 The correlation length of the lidar height of median 

energy metric at Barro Colorado was determined to be 

approximately 90-100 m.   
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Equation 4.1   AGBMs= 21.297-6.953(D)+0.740(D2)   where D is the stem 

diameter in cm, and AGBMs is the estimated oven-dried aboveground biomass 

for the stem in kg 

 

Equation 4.2     AGBMs= exp(-2.134+2.530*ln(D)) where D is the stem 

diameter in cm, and AGBMs is the estimated oven-dried AGBM for the stem in 

kg, and “exp” means “e raised to the power of” 

 

Equation 4.3    QMSD= sqrt ( (Σ (D2)/n)     where D is the stem diameter in cm, 

n is the number of stems in the plot and QMSD is the quadratic mean stem 

diameter in cm 

 

Equation 4.4. BA= Σ (π (D/2)2) where D is the stem diameter in meters and 

BA is the basal area (m2) measured at breast height 

 

Plot-level values of estimated aboveground biomass were then 

calculated by summing all estimated stem-level aboveground biomass values 

and converting to standard units (Mg/ha). Sixteen plots at the Panama study 

area contained stems whose diameters were larger than the maximum diameter 

used to develop the original allometric equation (Equation 4.2), therefore, only 

plots that contained stems within this regression range (<150 cm) were used in 

the regression analysis comparing lidar metrics with EAGB. However all plots 

were used in the regression analysis involving lidar metrics and QMSD or basal 

area.     

 

 

 



 133

Lidar data 

Lidar data were collected over both study areas in March 1998 by the 

Laser Vegetation Imaging Sensor (LVIS, Blair et al. 1999, Dubayah et al. 2000). 

LVIS is an airborne scanning laser altimeter (Figure 4.3) designed and 

developed at NASA’s Goddard Space Flight Center. LVIS measures the 

roundtrip time for pulses of near-infrared laser energy to travel to the surface 

and back. The incident energy pulse interacts with canopy (e.g., leaves and 

branches) and ground features and is reflected back to a telescope on the 

instrument. Unlike most other laser altimeters, LVIS digitizes the entire time-

varying amplitude of the backscattered energy (in 30 cm vertical bins). This 

yields a “waveform” or profile related to the vertical distribution of intercepted 

surfaces from the top of canopy to the ground (see Figure 4.3 and Blair et al. 

1999, Dubayah and Drake 2000, Dubayah et al. 2000).     

 In this study, a footprint size of approximately 25 m in diameter was 

used. This exceeds the average crown diameter of large emergent trees in 

closed-canopy tropical forests (King 1996, Richards 1996) and thereby 

consistently allows lidar energy to reach the ground through inter-crown gaps 

(Dubayah et al. 1997). LVIS scanned across a swath of approximately 1 km 

with a 50% overlap of footprints across swath, and contiguous along-track 

footprint spacing (Figure 4.3). LVIS footprints can be geolocated to within 2 

meters (Blair and Hofton 1999). At both study areas, only LVIS footprints that 

were entirely coincident with field plots were included.   

  For the LVIS observations that fell within each field plot some were 

eliminated according to two different filtering rules. First, if the total energy 
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Figure 4.3 The scanning airborne Laser Vegetation Imaging Sensor (LVIS) 

was flown over both study areas. LVIS digitizes waveforms related to the 

vertical distribution of canopy and ground surfaces within each 25 m diameter 

footprint. Canopy height and the height of median energy (HOME) metrics 

were calculated for all LVIS shots.  
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received at the instrument was less than 10% of the mean total energy for all 

shots, and the shot elevation was greater than 200 m higher than the lowest 

elevation for the plot then the shot was eliminated. This filter was used to 

remove only shots that were reflected off of clouds. Second, if the last portion of 

the waveform did not return to the background noise level for the shot (plus one 

standard deviation) the shot was eliminated. This eliminated shots whose 

ground returns were obviously not recorded. Together these filters removed 

approximately 30% of all LVIS shots.    

  Two metrics were derived from the LVIS waveforms. First, canopy height 

was calculated by identifying the location within the waveform where the signal 

initially increases above the mean background noise level (the canopy top). 

Next the ground return is identified as the center of the last gaussian pulse. The 

canopy height is then the distance between these two locations.  

The other lidar metric, height of median energy (HOME), is calculated by 

first identifying the location of the median of the entire signal (i.e. above the 

noise level), including the energy from both canopy and ground surfaces (Drake 

et al. In press). This location is then referenced to the ground to derive a height. 

The HOME metric is therefore influenced by both the vertical distribution of 

canopy elements (Drake et al. In review) and the canopy cover because in 

more open canopies a greater proportion of the lidar energy is reflected from 

the ground thus lowering the HOME metric. Plot-level means for canopy height 

and HOME were then calculated for all shots that fell within each plot.   
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Adjustment of Lidar HOME for Deciduousness in Panama 

The Costa Rica study area receives approximately 4200 mm rain/year and 

is in the tropical wet forest life zone (Holdridge et al. 1971). The leaf loss from 

canopy trees at La Selva was minimal when the lidar flights occurred in mid-

March 1998. In contrast, the Panama study area spans a rainfall gradient from 

approximately 2000-3000 mm rain/year. When the lidar flights occurred in late 

March 1998, this area was at the end of its dry season and leaf loss from 

canopy-forming trees was extensive in some areas. As a result, more of the 

lidar energy was able to penetrate through the upper canopy, thereby reducing 

the lidar HOME metric relative to the Costa Rica study area. To compensate for 

this effect, a proportional adjustment to the HOME metric was made based on 

the estimated fraction of crown area that was deciduous (FCAD). The first step 

was to linearly interpolate between data points for precipitation and the fraction 

of crown area deciduous as listed in Condit et al. (2000). The relationship 

(Equation 4.5) was then used to interpolate FCAD from average precipitation 

values for all Panama field plots. Lidar HOME was then proportionally adjusted 

in these Panama plots by the fraction of crown area deciduous using the 

relationship in Equation 4.6.      

   

Equation 4.5    FCAD= -0.02 *Rainfall + 60.27   where Rainfall=mm/yr and 

FCAD= fraction of crown area deciduous (developed from Condit et al. 2000) 

 

Equation 4.6    HOME′ = HOME/(1-FCAD)    where HOME= lidar height of 

median energy (m) and  FCAD= fraction of crown area deciduous 
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Data Analysis  

A linear regression analysis was used to develop relationships between 

plot-level averages of lidar metrics and field-derived QMSD, basal area and 

EAGB for each study area. The lidar metric that was the best single predictor 

was then identified. For each forest structural characteristic (e.g., QMSD), an 

analysis of covariance (ANCOVA) was then performed to test for significant 

differences in the slope and intercept of the relationships (Zar 1996) developed 

for each site. This process was used for both the normal and deciduous 

adjusted HOME metrics.      

  

Results 

General Site Characteristics 

Primary and secondary forest sites in Panama have a larger quadratic mean 

stem diameter (QMSD), basal area and estimated aboveground biomass on 

average than the corresponding primary and secondary field sites in Costa Rica 

(Table 4.1).  Of these forest structural characteristics, the difference in mean 

basal area between the two sites is the least, at approximately 10% for primary 

forest plots, followed by an approximately 30% larger QMSD in the plots at the 

Panama study area. The largest difference is for estimated aboveground 

biomass, which is approximately 70% larger in the Panama plots that fall within 

the range of the general allometric equation (Equation 4.2), and 95% larger for 

all the Panama plots (including those outside the range) than primary forest 

plots in the Costa Rica study area. The mean estimated aboveground biomass 
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value for BCI that we calculated using Equation 4.2 (287 Mg/ha) corresponds 

well with a mean of 290 Mg/ha reported in Chave et al. (In preparation) using an 

equation that includes stem diameter, height and wood density.   

 The difference between lidar metrics from both study areas  (Table 4.2) 

was not as large. Lidar canopy heights were on average approximately 5% 

larger in primary forest plots in Panama compared to the Costa Rican plots. The 

differences between lidar height of median energy (HOME) values were on 

average less than 2%, as both were approximately 20 m.  

 

Relationship between lidar HOME and allometrically estimated 

aboveground biomass 

The lidar metric HOME is highly correlated with estimated aboveground 

biomass (EAGB) in both study areas (Figure 4.4). In the Panama study area, 

the R2 value is 0.66 for plots whose tree diameters are all within the range of 

the general allometric equation (Equation 4.2), and 0.82 for all Panama plots, 

with RMSE values of 31.52 Mg/ha and 39.10 Mg/ha respectively. For the Costa 

Rica relationship, the R2 value is 0.89 and the RMSE is 22.54 Mg/ha.  

Although the R2 value is greater for the Costa Rica relationship, the 

“relative regression error” (RMSE divided by mean) is slightly lower for the 

Panama relationship compared to the Costa Rica relationship (11.5% and 

14.06% respectively, Table 4.3). Thus, both the Panama and Costa Rica 

regression relationships are similar in terms of proportional errors in 

aboveground biomass estimates. In addition, the relative regression errors for  
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Table 4.2 Summaries for all lidar data used in this study.
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Y= 6.77* HOME +26.28 
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R2:      0.89 
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Figure 4.4 Regression analysis for lidar height of median energy (m) vs. plot-

level allometrically estimated aboveground biomass (Mg/ha) for study areas in 

Panama (circles, dashed line, upper left equation) and Costa Rica (triangles, 

dotted line, lower left equation). The open circles in the Panama regression 

relationship indicate plots that contain stems whose diameters are larger than 

the original distribution sampled to develop the allometric equation (equation 

4.2) and were not included in the regression analysis.   
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Table 4.3 Coefficients of variation in forest structural characteristics and the 
relative regression errors from lidar equations for study sites in Panama and 
Costa Rica  

*Relative regression error = RMSE/ mean 
**With leafdrop-modified lidar height of median energy. 
*** Including plots with trees whose diameters are greater than the largest tree used to develop the  
     regression in Brown (1997)  
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both relationships are at or below the coefficient of variation (CV) for EAGB 

(Table 4.3).   

In other regards however, there is a great deal of divergence between 

the relationships for the two study areas (Figure 4.4). The slope is much greater 

in the Panama relationship (22.33) compared to the Costa Rica relationship 

(6.33). The Panama regression equation also has a negative intercept, probably 

the result of only sampling within relatively high biomass areas. An analysis of 

covariance (ANCOVA) shows that the slopes and intercepts of these two 

equations are significantly different (p<0.01).   

The regression lines from Figure 4.4 show that there is a great deal more 

EAGB in the Panama study area for any lidar HOME above 9 m. To some 

degree this is expected because although mean EAGB is approximately 70% 

higher in Panama primary forest plots, the lidar HOME is essentially the same 

(Tables 4.1 and 4.2). However, the differences in mean QMSD and basal area 

between the two study areas are smaller than the differences between mean 

aboveground biomass. Although aboveground biomass must be estimated 

using allometric relationships, both QMSD and basal area are directly 

measured, relatively precise quantities. This raises the next question that we 

address: do relationships between lidar metrics and forest structural summaries 

that are not allometrically estimated also differ between the two study areas?   
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Relationship between Lidar HOME and Directly Measured Structural 

Summaries 

Lidar HOME is strongly correlated with quadratic mean stem diameter 

(QMSD) in both study areas (Figure 4.5). The level of variation in QMSD 

explained by the HOME metric (i.e., the R2 value) is approximately 92% in the 

Costa Rica study area compared to 66% in the Panama study area. However, 

the RMSE in Panama (1.89 cm) is somewhat lower than the value from the 

Costa Rica relationship (2.09 cm). In addition, the relative regression errors for 

both relationships are smaller than the CV in QMSD for the respective sites 

(Table 4.3)  

HOME is also strongly correlated with basal area in both areas (Figure 

4.6). In this case the level of variation explained is approximately equal for both 

areas (~70%). The relative regression error (Table 4.3) from the Panama 

relationship (9%) is smaller than in the Costa Rica relationship (12.9%). In this 

case the relative regression error from the Panama relationship is smaller than 

the CV for basal area  (16.4%), however the relative regression error from the 

Costa Rica relationship is slightly larger than the CV for basal area (11.9%).         

The relationships between lidar HOME and QMSD (Figure 4.5) and 

between HOME and basal area (Figure 4.6) are not as divergent at the two 

study areas as were the relationships between HOME and EAGB (Figure 4.4). 

The slopes of the relationships between HOME and QMSD are similar at both 

sites, and were not found to be significantly different (p=0.55) in an ANCOVA 

analysis. Intercepts for the HOME-QMSD relationships, however, were found to 

be significantly different (p<0.01), indicating that the relationships are not   
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Figure 4.5 Regression analysis for lidar height of median energy (m) 

vs. plot-level quadratic mean stem diameter (cm) for study areas in 

Panama (circles, dashed line, upper left equation) and Costa Rica 

(triangles, dotted line, lower left equation).  
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Figure 4.6 Regression analysis for lidar height of median energy (m) 

vs. plot-level basal area (m2/ha) for study areas in Panama (circles, 

dashed line, upper left equation) and Costa Rica (triangles, dotted 

line, lower left equation).  
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equivalent between study sites. Similarly, both the slopes and the intercepts of 

the HOME-basal area relationships were found to be significantly different 

between the two study areas, however it should be noted that the y-intercept 

term in the Panama linear regression relationship was not significantly different 

from zero (p=0.19).  

The differences in these relationships show that the Panama plots have 

a greater QMSD and more basal area for the same median height (lidar 

HOME). Again, from the field and lidar summary statistics (Tables 4.1 and 4.2) 

this is anticipated because although the mean basal area and QMSD are higher 

in the Panama plots, the lidar HOME is approximately the same.  

There are two possible reasons for differences in the lidar HOME- basal 

area and HOME-QMSD relationships between study areas. First, tree 

diameters could be larger for a given tree height on average at Panama. An 

analysis of the relationship between stem diameter and stem height from both 

Panama (based on allometry from BCI in Bohlman et al. In review) and La 

Selva supports this trend (Figure 4.7). It is possible that this individual-level 

relationship could influence the plot-level relationships between lidar HOME and 

either basal area or QMSD. A second possible explanation is that the drier 

conditions at Panama resulted in more leaf loss, which in turn lowered lidar 

HOME values. The HOME metric is determined by the vertical distribution of 

canopy elements (e.g., leaves and branches), therefore a reduction in leaf 

abundance of canopy-forming trees in drought-deciduous areas (Condit et al. 

2000) would allow more energy to penetrate further into the canopy, thereby 
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Figure 4.7 Relationship between tree stem diameter and height 

at La Selva Biological Station, Costa Rica (dark line) and at Barro 

Colorado Island, Panama (light line). The relationship at Barro 

Colorado Island is from Bohlman et al. (in review). The 

relationship at La Selva is from the primary forest plots (Clark and 

Clark 2000) and is adapted from Drake et al. (in review).  
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lowering the HOME value. We therefore next examine the effect of this 

deciduousness on the relationship between HOME and forest structural 

summaries.  

 

Relationship between Deciduous-adjusted Lidar HOME and Directly 

Measured Structural Characteristics 

 

The proportional adjustment of HOME for the effect of leaf loss of canopy trees 

preserved the strength of the relationships between HOME and QMSD (Figure 

4.8) and between HOME and basal area (Figure 4.9). The level of variation in 

basal area that is explained with HOME decreased slightly (from 70% to 65%), 

whereas the R2 value for the HOME-QMSD relationship increased slightly (from 

0.66 to 0.7). More importantly, after adjustment the relationships are much more 

similar between the two study areas.   

The differences between the slope and the intercept from both HOME′-

QMSD relationships are not significantly different using an ANCOVA test 

(p=0.85 and 0.21 respectively). Similarly, the difference in slope from the 

HOME′-basal area relationships in the two study areas is smaller and not 

significantly different (p=0.06). The intercepts in the HOME′-basal area 

relationships were found to be significantly different (p<0.01).  Nonetheless, 

where the data cover the same range of HOME′ and basal areas, the two point 

clouds now overlap more completely and appear similar (Figure 4.9).  
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Y= 0.81* HOME + 8.19 
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R2:      0.92 
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R2:      0.70 

Figure 4.8 Regression analysis for deciduous-adjusted lidar height of 

median energy (m) vs. plot-level quadratic mean stem diameter (cm) for 

study areas in Panama (circles, dashed line, upper left equation) and 

Costa Rica (triangles, dotted line, lower left equation).  
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Y= 0.88* HOME + 5.37 
RSME:  3.14 m2/ha 
R2:      0.70 

Y= 1.08* HOME + 2.91 
RSME:  2.59 m2/ha 
R2:      0. 65 
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Figure 4.9 Regression analysis for deciduous-adjusted lidar 

height of median energy (m) vs. plot-level basal area (m2/ha) for 

study areas in Panama (circles, dashed line, upper left equation) 

and Costa Rica (triangles, dotted line, lower left equation).  
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Thus, proportional adjustment of lidar HOME metrics by simple fraction 

of crown area deciduous values eliminated much of the difference between 

HOME-basal area and HOME-QMSD relationships at both Costa Rica and 

Panama plots. The minor remaining differences may be the result of small 

differences in diameter vs. height relationships in both study areas (Figure 4.7) 

or a difference in the ranges of conditions studied combined with a modest 

nonlinearity in the underlying causal relationship.  In either case, leaf loss in 

canopy trees at the end of the dry season in Panama was responsible for much 

of the difference between relationships in these two tropical regions that we 

found with unadjusted lidar data.   

 

Relationship between Deciduous-adjusted Lidar HOME and 

Allometrically Estimated Aboveground Biomass 

As with the directly measured variables, the adjustment in HOME also 

did not greatly affect the strength of the relationship between HOME and EAGB 

at the Panama study area (Figure 4.10). The R2 and the RMSE stayed 

approximately the same (66% and ~31Mg/ha respectively) after HOME values 

were adjusted. In contrast, although the adjustment did slightly reduce the slope 

of the Panama relationship (from 22.33 to 21.46), the relationships from the two 

study areas were still significantly different in both slope and the intercept 

(p<0.01, from ANCOVA). 

The differences in relationships between HOME′ and EAGB for the two 

study areas can be linked to two factors. First, the individual-level diameter vs. 

height allometric relationships are slightly different for the two study areas. 
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Figure 4.10  Regression analysis for deciduous-adjusted lidar height of 

median energy (m) vs. plot-level allometrically-estimated aboveground 

biomass (Mg/ha) for study areas in Panama (circles, dashed line, 

upper left equation) and Costa Rica (triangles, dotted line, lower left 

equation). The open circles in the Panama regression relationship 

indicate plots that contain stems whose diameters are larger than the 

original distribution sampled to develop the allometric equation 

(Equation 4.2) and were not included in the regression analysis.   
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As mentioned earlier, the result of this effect is that for a given tree height, trees 

in Panama are predicted to have a slightly greater diameter on average than 

trees in the Costa Rica study area (Figure 4.7). The second, and more 

important, cause for differences between the two study areas is the effect of 

using different allometric equations to estimate aboveground biomass from 

stem diameter. At the same total basal area, Panama sites are calculated to 

have much larger biomass than nearly all similar sites in Costa Rica (Figure 

4.11). This is despite having only minor differences in HOME-QMSD (Figure 

4.8) and HOME-basal area (Figure 4.9) relationships after adjustment for leaf 

loss. As a result, sites at Panama and Costa Rica with nearly identical basal 

areas and HOME′ values may have very different EAGB values.   

 

Discussion  

Lidar remote sensing has shown promise for the estimation of aboveground 

biomass in a variety of temperate and tropical forests (e.g., Means et al. 1999, 

Drake et al. In press). In these studies, different metrics from large-footprint 

lidar waveforms (normal or transformed to account for attenuation and 

absorption of lidar energy through the canopy) have been used to predict 

aboveground biomass. However, the generality of relationships between lidar 

metrics and aboveground biomass remained untested. This study provides an 

initial assessment of the generality of the relationships between lidar metrics 

and aboveground biomass in closed-canopy Neotropical forests.  
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Figure 4.11 Regression analysis for plot-level basal area (m2/ha) vs. 

plot-level allometrically estimated aboveground biomass (Mg/ha) for 

study areas in Panama (circles, dashed line, upper left equation) and 

Costa Rica (triangles, dotted line, lower left equation). The open 

circles in the Panama regression relationship indicate plots that 

contain stems whose diameters are larger than the original 

distribution sampled to develop the allometric equation (Equation 4.2) 

and were not included in the regression analysis.   
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Our results show that relationships between a simple lidar metric (height 

of median energy) and directly measured forest structural characteristics, such 

as basal area and QMSD, are nearly identical at both Costa Rica and Panama 

study areas after accounting for the extensive leaf loss of canopy-forming trees 

in Panama during the study period (Figures 4.8 and 4.9). There is still a subtle 

difference in the HOME′-basal area relationships from the two study areas that 

could be attributable to differences in the individual-level diameter vs. height 

allometric relationships for the two sites. Nevertheless, these results illustrate 

that the same lidar metric, HOME, is strongly correlated with basal area and 

QMSD. In addition, the relationships appear to be general across both tropical 

wet and tropical moist forest life zones.  

The relationships between lidar metrics and allometrically estimated 

aboveground biomass are significantly different, however, for these two study 

areas. Although adjustment for leaf loss slightly improved the agreement 

between the two site-specific relationships, the two different allometric 

equations (Equations 4.1 and 4.2) used to estimate aboveground biomass lead 

to significant differences at both study areas. If instead the same allometric 

equation (e.g., the tropical wet forest equation; Equation 4.1) is applied in both 

study areas the relationships between HOME′ and EAGB are no longer distinct 

(Figure 4.12). Estimated aboveground biomass values for the Panama plots fall 

entirely within the data envelope of the relationship between HOME′-EAGB for 

the Costa Rica plots. This demonstrates that the differences in the lidar-

biomass relationships at the two study areas are primarily the result of the two 

allometric relationships used to estimate aboveground biomass.      
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Figure 4.12 Deciduous-adjusted lidar height of median energy vs. 

plot-level aboveground biomass estimated using only the tropical wet 

forest allometric equation (Equation 4.1) for study areas in Panama 

(circles) and Costa Rica (triangles). The open circles indicate plots in 

the Panama study area that contain stems whose diameters are 

larger than the original distribution sampled to develop the allometric 

equation (Equation 4.2).   
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This effect of using contrasting allometric equations is also illustrated in 

the relationships between field-measured basal area and EAGB for the two 

study areas (Figure 4.11), where primary forest plots of the same basal area 

(approximately 20-30 m2/ha) are estimated to contain approximately 50-70% 

more aboveground biomass in the Panama tropical moist forests plots than in 

the Costa Rica tropical wet forest plots. Because some sites in these two study 

areas have approximately the same basal area and median height (or HOME′), 

as evidenced in Figure 4.9, one of the only remaining variables that could 

contribute to such a large difference in aboveground biomass at the two study 

areas is wood density.  The question remains: are stems in tropical moist forest 

areas actually 50-70% denser on average than those in tropical wet forest 

areas? In other words, for the same basal area and lidar height of median 

energy do tropical moist forests contain 50-70% more carbon than tropical wet 

forests?  

Because remotely sensed estimates of biomass (and carbon) are 

ultimately dependent on allometric relationships, an assessment of the 

applicability of these general allometric equations vs. locally-derived allometric 

equations (cf. Keller et al. In Press) would be beneficial. The general allometric 

equations (Equations 4.1 and 4.2) for each respective life zone were developed 

from approximately 170 destructively sampled trees in different areas (Brown 

1997). Although the divergence between tree biomass estimates from each life 

zone is much greater for large trees (Brown 1997), the number of these large, 

high-biomass trees that have been sampled is low. For the tropical wet forest 

equation (Equation 4.1) 26 trees with stem diameters greater than 70 cm were 
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sampled, and for the tropical moist equation (Equation 4.2) only 5 trees greater 

than 70 cm diameter were sampled (Brown 1997). Further, the largest tree 

sampled to develop the tropical moist forest equation had a stem diameter of 

148 cm, whereas the largest tree diameter sampled in the Panama study area 

was 220 cm. We therefore join with other authors (Brown et al. 1995, Clark and 

Clark 2000) who have called for more destructive sampling, especially of large 

trees, in different tropical life zones to more rigorously assess the robustness of 

general allometric equations. Ultimately, this will allow for better broad-scale, 

remotely sensed aboveground biomass estimates.    

Assuming that the general allometric equations used in this study are 

reasonably accurate, these results have significant implications for how global 

observations from future spaceborne lidar instruments (e.g., VCL) should be 

used to produce global estimates of terrestrial aboveground biomass. Our 

results show that it will likely be necessary to develop a series of relationships 

between lidar metrics and aboveground biomass in different bioclimatic life 

zones. For example, lidar observations from tropical wet forests could be used 

in an equation such as the relationship developed for the Costa Rica study 

area, whereas in other tropical moist forests the Panama relationships may be 

applicable. Future research will test the applicability of these new relationships 

at other study areas within the same bioclimatic life zone.  

These results also illustrate the importance of climatic variables for 

developing general algorithms for the estimation of aboveground biomass in 

different tropical areas using lidar data. For example, average rainfall data can 

be used to estimate leaf loss in canopy-forming trees during the dry season, 
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which, as we have shown, will affect the generality of the relationship between 

lidar metrics and tropical forest aboveground biomass.  At a minimum, if leaf 

phenology data and models are unavailable, biomass estimates would need to 

be developed from lidar data collected while the canopy is fully leafed out. 

This study only begins the exploration of the generality of the 

relationships between lidar metrics and aboveground biomass in closed-canopy 

Neotropical forests, however it illustrates that this research area holds great 

potential. The strong correlation of lidar metrics with aboveground biomass in a 

variety of tropical forests is an improvement over many existing remote sensing 

techniques which are currently not able to reliably estimate biomass in older 

secondary and primary forests (Luckman et al. 1997, Steininger 2000, Nelson 

et al. 2000). Although relationships between lidar metrics and biomass may 

differ, the geographic regions where these differences occur appear to be 

distinct and may be predicted using climatic variables such as temperature and 

rainfall.  

Future work in other tropical and extra-tropical forest environments may 

reveal that it is possible to develop a relatively simple algorithm or model to 

estimate terrestrial aboveground biomass globally from a suite of lidar and 

climatic metrics.  In more open tropical woodlands, it is likely that additional lidar 

metrics such as canopy top height and a canopy cover index will be necessary 

to estimate aboveground biomass accurately. We also expect that the fusion of 

lidar data with high spatial and temporal satellite imagery will further extend the 

utility of these data. 
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Chapter 5.  Summary and Conclusions 

 

This research has shown that large-footprint lidar instruments are effective 

tools for aboveground biomass estimation in dense, closed-canopy tropical 

forests. The analysis in chapter 2 illustrated that metrics from lidar waveforms 

are highly correlated with aboveground biomass, as well as basal area and 

mean stem diameter at a tropical wet forest. Furthermore, the relationships 

were not asymptotic through the entire range of conditions sampled. This is 

important because this tropical forest has a canopy cover that is among the 

highest found in closed-canopy tropical forests.     

The nature of the relationship between lidar metrics and aboveground 

biomass was further explored in chapter 3. Lidar waveform metrics are strongly 

correlated with metrics from field-derived crown volume distributions. In other 

words, lidar data are sensitive to important differences in the vertical distribution 

of canopy structure in different land cover types. This is an important 

component of the strong relationship between lidar metrics and aboveground 

biomass in tropical forests because metrics from field crown volume 

distributions were also strong predictors of aboveground biomass. This 

relationship is the result of the ecological and biomechanical links between 

vertical structure and aboveground biomass (King and Loucks 1978, Oohata 

and Shinozaki 1979, O'Neill and DeAngelis 1981, Givnish 1986, Franco and 

Kelly 1998).  

It is also likely that lidar waveform metrics such as height of median 

energy (HOME) are strongly influenced by the degree of canopy cover. In open 
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canopies, more lidar energy passes through the canopy and is reflected from 

the ground. This creates a large ground peak and thereby will result in a 

relatively low HOME value. This trend was observed in the differences in HOME 

values from agroforestry and primary forest areas in chapter 4 (Table 4.2), and 

is illustrated in Figure 5.1. As a result, areas that are more open due to 

anthropogenic (e.g., selective logging) or natural (e.g., treefall) disturbances will 

have lower AGBM and HOME values compared to dense undisturbed primary 

forest areas. This trend can be observed in the landscape-level image of lidar-

estimated AGBM (Figure 2.10) where selectively logged areas in the western 

portion of La Selva have lower predicted AGBM densities than undisturbed (but 

environmentally similar) areas in the eastern portion of La Selva.            

The trends discussed above illustrate why lidar metrics such as HOME are 

good predictors of AGBM at the tropical wet forest study areas from chapters 2 

and 3. However, there still remained a question as to how generally applicable 

these relationships are in tropical areas with environmental conditions different 

from La Selva. The results in chapter 4 show that environmental variables such 

as total annual precipitation are pertinent in at least two ways to the exploration 

of the generality of relationships between lidar metrics and forest structural 

characteristics.  

First, these variables can explain differences in leaf phenology that will 

affect lidar data collected during periods of canopy deciduousness. If leaf 

phenology data or models are unavailable, then estimates of aboveground 

biomass could still be developed from lidar data collected while the canopy is 

fully leafed out. Second, environmental variables may also be used to delineate 
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Figure 5.1 The lidar height of median energy (HOME) metric is 

sensitive to differences in the vertical distribution of canopy 

elements, as well as the canopy cover. In low canopy cover 

conditions found in agroforestry areas at La Selva Biological 

Station (upper portion), much of the lidar energy is reflected from 

the ground, thus lowering HOME. In contrast, most of the energy 

is reflected from the canopy elements in primary forest areas 

(lower portion), thus increasing HOME.   
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regions where appropriate relationships between lidar metrics and aboveground 

biomass should be applied based on underlying field-developed allometric 

relationships. For example, in areas that are designated as tropical wet forest 

the HOME- EAGB relationship from La Selva (Table 2.4, equation 4) may be 

appropriate, whereas in tropical moist forests the relationship from Panama 

(Figure 4.10) could be used. It should be noted, however, that further research 

into both the generality of lidar and field allometric relationships is necessary. 

     Perhaps the most important finding of this research is that lidar metrics are 

highly correlated with estimated aboveground biomass in a variety of conditions 

found in closed canopy Neotropical forests. This represents a great 

improvement over previous attempts to estimate aboveground biomass using 

passive optical (Nelson et al. 2000, Steininger 2000) and synthetic aperture 

radar or SAR (Luckman et al. 1997). Figure 5.2 is a visualization of the 

estimated improvement of large-footprint lidar for AGBM estimation at La Selva 

over the published saturation limits of passive optical and SAR in closed-

canopy Neotropical forests. Non-gray areas represent information that is gained 

through the use of large-footprint lidar for aboveground biomass estimation.         

 This represents an important breakthrough in the remote sensing of land 

surface characteristics. The sensitivity of lidar to differences in aboveground 

biomass within primary and older secondary forests in tropical wet (chapter 2 

and 3) and tropical moist forests (chapter 4) will be invaluable to global 

biogeochemical models that estimate carbon fluxes between vegetation and the 

atmosphere.     
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Figure 5.2  Visualization of aboveground biomass information 

gained through the use of large-footprint lidar vs. (A) synthetic 

aperture radar and (B) passive optical remote sensing techniques 

Saturation limits are adapted from published values for L-band 

SAR (Luckman et al. 1997) and Landsat TM (Steininger 2000)  
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The Road Ahead      

     The research in this dissertation is only a first step towards developing 

global biomass estimates in terrestrial vegetation using large-footprint lidar. 

There are several areas that future lidar research should focus on to achieve 

that goal. Several of these areas are discussed below.  

First, the relationships between lidar metrics and directly measured 

forest structural characteristics must be examined in other areas. These 

structural characteristics, such as canopy height metrics, basal area and mean 

stem diameter, can be quantified in a relatively precise manner. As a result they 

represent a better “target” to assess the accuracy of lidar (e.g., Peterson 2000 

for accuracy of canopy heights). In addition, the examination of the generality of 

the relationships between lidar metrics and directly measurable characteristics 

is relatively straightforward because they are not dependent on field-estimated 

allometric equations.        

Second, future studies should test the applicability of these new linear 

relationships between lidar metrics (e.g., HOME) and allometrically estimated 

aboveground biomass in other study areas within the same tropical life zone. 

For example, will the relationship from the Panama study area (Figure 4.10) 

also apply to tropical moist forests in the Amazon basin? Further, will either 

relationship apply to Paleotropical forests such as the tall Dipterocarp forests in 

Southeast Asia? Although no lidar data are presently available from this region, 

the preliminary analysis presented in chapter 1 reveals that the relationship 

between field-collected stand height and biomass is fairly robust throughout the 

tropics (Figure 1.4).         
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 Third, future studies should also begin to explore other lidar metrics that 

can be used to improve the generality of aboveground biomass estimation 

techniques. For example, the incorporation of a lidar derived canopy cover 

index, such as the ratio of energy in the ground return (chapter 2), along with 

the canopy height metric may help extend relationships into open woodlands.      

Fourth, when several of the research areas above have been more fully 

investigated then it should be possible to develop a general algorithm for global 

biomass estimation. This kind of approach could identify areas where the 

appropriate relationship between lidar metrics and estimated aboveground 

biomass should be used. For example, if relationships are valid within fairly 

broad bioclimatic life zones (Holdridge et al. 1971) then these areas could be 

identified, along with other important climatic variables that may directly affect 

the relationships (e.g., drought deciduousness). This research would allow for 

relatively straightforward global terrestrial biomass estimates using future 

spaceborne large-footprint lidar instruments.      

Fifth, future research should also focus on the fusion of lidar data with 

other remotely sensed data and products from other remote sensing 

instruments. High temporal resolution data (e.g., from the MODerate resolution 

Imaging Sensor) could provide information related to seasonal and long-term 

vegetation dynamics that would be missed by relatively short-term spaceborne 

lidar missions such as the Vegetation Canopy Lidar (Dubayah et al. 1997). 

Additionally, data products from these sensors such as land cover distributions 

could be helpful for efforts to extrapolate outside of areas that are sampled with 

spaceborne lidar instruments (see Dubayah et al. 2000). High spatial resolution 
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data (e.g., from IKONOS) could also benefit landscape to regional scale carbon 

flux estimation efforts, as well as to aid efforts to scale-up to broader spatial 

scales. Hyperspectral instruments (e.g., Hyperion on the Earth Observing-1 

satellite) may provide data related to leaf phenology that could be of direct use 

in adjusting lidar metrics (similar to chapter 4). In addition, future radar data sets 

may be complementary to spaceborne lidar data, especially in areas that are 

frequently cloud covered.  

 Finally, future research should also begin to connect lidar data with 

biogeochemical models. In particular, new height-structured terrestrial 

ecosystem models such as the Ecosystem Demography (ED) model (Hurtt et 

al. 1998, Moorcroft et al. In press) can be readily initialized with lidar data to 

predict carbon fluxes over policy relevant time scales. Upcoming research will 

focus on using airborne large-footprint lidar data to initialize the ED model at a 

variety of temperate and tropical sites. These efforts can then one day be 

extended to initialize ED with land surface information from spaceborne lidar to 

produce estimates of global carbon fluxes.      
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