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Abstract

A fundamental property of all forest landscapes is the size frequency distribution of

canopy gap disturbances. But characterizing forest structure and changes at large spatial

scales has been challenging and most of our understanding is from permanent inventory

plots. Here we report the first application of light detection and ranging remote sensing

to measurements of canopy disturbance and regeneration in an old-growth tropical rain

forest landscape. Pervasive local height changes figure prominently in the dynamics of

this forest. Although most canopy gaps recruited to higher positions during 8.5 years,

size frequency distributions were similar at two points in time and well-predicted by

power-laws. At larger spatial scales (hundreds of ha), height increases and decreases

occurred with similar frequency and changes to canopy height that were analysed using a

height transition matrix suggest that the distribution of canopy height at the beginning of

the study was close to the projected steady-state equilibrium under the recent

disturbance regime. Taken together, these findings show how widespread local height

changes can produce short-term stability in a tropical rain forest landscape.
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I N T R O D U C T I O N

The size frequency distribution of canopy disturbances is a

fundamental property of all forest landscapes (Hubbell &

Foster 1986; Sanford et al. 1986; Valverde & Silvertown

1997; Cumming et al. 2000; Fisher et al. 2008). But

characterizing forest structure and changes, such as regen-

eration of canopy gaps in tropical rain forests, has been

difficult to accomplish at large spatial scales commensurate

with human activities and many biological processes (Clark

& Clark 1992; Jones et al. 2005; Hardesty et al. 2006). Some

studies have used data from remote sensing to quantify

forest structure on landscapes (Hall et al. 1991; Nelson et al.

1994; Drake et al. 2003; Vepakomma et al. 2008), but most

of our understanding is from small permanent plots of up to

several tens of hectares in size (Hubbell & Foster 1986;

Phillips & Gentry 1994; Phillips 1998; Clark & Clark 2000;

Chave et al. 2008; Phillips et al. 2008). How, or whether,

these findings represent forest dynamics at landscape to

regional scales is largely unknown (Fearnside 2000; Clark

2004a; Fisher et al. 2008).

Previous studies have argued that rates of canopy

disturbance are increasing (Phillips & Gentry 1994) and

biomass is accumulating (Phillips 1998) throughout large

areas of undeveloped lowland rain forest. These findings

have been controversial (Clark 2002, 2004b; Wright &

Calderon 2006), because inferences are from repeated

censuses of small permanent-inventory plots. Methodolog-

ical bias may have confounded early measurements (Clark

2002; Phillips et al. 2002) and data from other sources point

toward alternative conclusions (Chave et al. 2003; Clark et al.

2003; Chave et al. 2008). Some studies have suggested that

most local sites in any tropical rain forest landscape are

recovering from previous disturbance, which could account
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for observations of increasing biomass (Fearnside 2000;

Clark 2004a; Körner 2004; Chave et al. 2008). A recent study

demonstrated that local sampling within field-based plots

may not produce unbiased estimates of regional forest

dynamics (Fisher et al. 2008). Whether or not plots provide

representative samples depends on the spatial distribution

and sizes of canopy gaps at large spatial scales and the size

of the area sampled within plots (Fisher et al. 2008).

Remote sensing has been used to measure forest structure

in temperate and tropical ecosystems (Hall et al. 1991;

Nelson et al. 1994; Clark et al. 2004a,b,c; Vepakomma et al.

2008). Many of these approaches have used relatively

conspicuous features to identify large disturbance patches

(Nelson et al. 1994; Chambers et al. 2007) or biological

invasions (Asner et al. 2008) and typically provide estimates

from a single point in time. However, recent developments

in the capacity of airborne light detection and ranging

(LiDAR) enable precise measurements of forest structure

and changes, providing opportunities to characterize

dynamics of forest ecosystems on landscapes (Asner et al.

2008; Vepakomma et al. 2008). By recording the return-time

of reflected laser pulses, aircraft-mounted LiDAR systems

provide measurements of canopy height and ground

elevation and the vertical and horizontal distribution of

biomass. These data can be used to generate spatially-

referenced, extensive and fine-grained vegetation height

measurements that are objectively acquired, facilitating

measurements of the forest canopy that are difficult to

obtain from a ground-based perspective.

We quantified the structure and dynamics of an old-

growth tropical rain forest landscape using data collected

8.5 years apart from two LiDAR systems. Data from each

system were processed to generate imagery with 5 m spatial

resolution, where each 5 m pixel contained a local height

estimate that corresponded to traditional interpretations of

canopy height used in studies of forest dynamics (c.f.

Brokaw 1982). We used these data to characterize size

frequency distributions of forest canopy gaps and to

determine whether a tropical rain forest landscape was

close to steady-state equilibrium with the recent disturbance

regime.

R E M O T E M E A S U R E M E N T O F F O R E S T S T R U C T U R E

A N D D Y N A M I C S

The study was conducted in 444 ha of old-growth rain

forest at the La Selva Biological Station, in the Atlantic

lowlands of Costa Rica (Fig. 1). The site is classified as

Tropical Wet Forest in the Holdridge life-zone system and

receives c. 4 m of rainfall annually. Mean monthly temper-

Developed

Logged

Old growth

Plantation 1000

1997 LiDAR

Field plots

Reserve

Second growth

Swamp

Figure 1 La Selva, Costa Rica. Land use

history and locations of field plots and light

detection and ranging (LiDAR) coverage.

The site has a mixed history of historical

land use, including cleared or developed

areas, selectively logged forest, old-growth

forest, current and abandoned plantations

or pastures, second-growth forests and

swamps. Remote sensing data were collected

in 1997 (rectangular area) and 2006 (entire

area). Analyses were restricted to the old-

growth forest.
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ature is 26 �C and relief ranges from 41–142 m on highly

weathered Oxisols (Kleber et al. 2007). Mean canopy height

is 20.3 m ± 6.9 m SD and the density of stems ‡ 10 cm

diameter in terre firme old-growth is 504 ± 22 individu-

als ha)1 (Clark & Clark 2000). Estimated above-ground

biomass is 160.5 ± 4.2 Mg ha)1 (Clark & Clark 2000). Most

of the study site is on undulating upland plateaus for which

there is no evidence of extensive historical forest clearing

(Kennedy & Horn 2008). A detailed site description is in

McDade et al. (1994).

We quantified forest structure and dynamics using data

collected 8.5 years apart from two LiDAR systems. The

FLI-MAP system (John E. Chance and Associates, Lafay-

ette, Louisiana, USA) and Leica ALS50 (Cognocarta GIS

LLC, San Jose, Costa Rica) are discrete pulse, scanning laser

altimeters. Data were collected for 444 ha of old-growth

tropical rain forest on September 12–13, 1997 (Clark et al.

2004c) and March 13–14, 2006, respectively. We processed

LiDAR data to generate 5 m raster canopy surface models

(digital surface model, DSM). Each 5 m pixel contained the

mean of all elevation measurements within the given pixel,

so that local height estimates would correspond to

traditional interpretations of canopy height used in defining

gap vs. non-gap areas (Brokaw 1982). To estimate canopy

height above ground, we generated raster ground surfaces

with 5 m spatial resolution (digital terrain model, DTM) and

subtracted the respective DTM from DSM elevation to

produce digital canopy models. For the FLI-MAP system,

we resampled the 1 m DTM generated by Clark et al.

(2004c) to 5 m using nearest-neighbour resampling. For the

Leica ALS50 we generated a 5 m DTM by applying a natural

neighbour interpolation to point elevation estimates that

were classified as ground elevation. Because occasional

interpolation errors in the DTM will influence canopy

height estimates (Vepakomma et al. 2008), we excluded 11

pixels in 1997 and 72 pixels in 2006 with negative canopy

height estimates and our analyses are based on the

remaining 177 750 observations. We used data from

extensive field surveys to establish that LiDAR DTM

estimates are precise and accurate within the old-growth

study area. The relationship between field and LiDAR

estimates of ground elevation in 2006 is: field measured

elevation (m) = 0.999 · LiDAR predicted elevation

(m) ) 0.406 m, Pintercept < 0.001 Pslope < 0.001, r2 =

0.994, root mean squared error (RMSE) = 1.85 m.

To quantify forest dynamics using data from LiDAR, we

calculated height changes within 5 m grid cells using LiDAR

imagery from 1997 and 2006 and examined the distribution

of canopy height change and properties of the transition

matrix, A, for 1 m canopy height classes between 0 and

56 m throughout old-growth forest at La Selva. To calculate

canopy height changes, we first coregistered LiDAR imagery

from 1997 and 2006 using a geographic information system.

The correction was an affine transformation applied to six

control points that were well-distributed throughout the old-

growth study area. Overall RMSE was 1.24 m (i.e. smaller

than the 5 m side length of a single pixel). We then

subtracted 1997 from 2006 canopy elevation to produce a

model of canopy height change.

The distribution of canopy height change can be used to

infer the dynamics of disturbance and regeneration that are

operating at large spatial scales. If most local sites are

recovering from a previous disturbance, the distribution

could be right skewed, as more sites would increase than

decrease in height. This could occur, for example, if the old-

growth landscape at La Selva is embedded within a larger

historical disturbance patch that predates the first census

from which recovery is still underway (Nelson et al. 1994;

Fearnside 2000; Clark 2004a; Körner 2004). In contrast, a

landscape that has experienced catastrophic disturbance

between height measurements could have a left-skewed

distribution of canopy height change, as height losses would

occur more frequently than increases under this scenario.

This could occur if mortality rates were increasing through

time (e.g. Phillips & Gentry 1994), or if disturbance events

over the transition interval caused widespread canopy

damage. Finally, if the dynamics of disturbance and

regeneration are close to the steady-state expectation, height

increases and decreases should occur with similar frequency

and the distribution of canopy height change would be

symmetric with a mean close to zero.

We calculated the steady-state distribution of canopy

height under the recent 8.5 year disturbance regime by

solving for the dominant right-hand eigenvector of a height

transition matrix, A (Caswell 2000). The A matrix has

dimensions 56 · 56, one column and row for each 1 m

height class. Elements of the A matrix integrate growth and

lateral filling, mortality and branch loss that characterize

forest dynamics. Each column and row combination

contains the empirically estimated probability that the height

class at column i will enter the height class at row j over the

8.5 year transition interval. Thus, columns of the A matrix

can be interpreted as prospective height transition proba-

bilities, because they represent the likelihood of occupying

future states, given a current height class (Fig. 2). In

contrast, rows of the A matrix can be interpreted as

retrospective projections of height transitions, because they

describe probabilities of occupying past states, given a

height class (Fig. 2). An aggregation of the A matrix is in

Table 1 and the full transition matrix is in Appendix S1.

Calculation of the dominant right-hand eigenvector

associated with the height transition matrix produces the

projected distribution of canopy height associated with

dynamics over the recent 8.5 year interval. Because our

analysis is based on two time points, differences between the

observed distributions of canopy height and the steady state

Letter Pervasive canopy dynamics 157

� 2008 Blackwell Publishing Ltd/CNRS



expectation can only decrease through time. We therefore

compared the steady-state distribution of canopy height

under the recent disturbance regime to the observed height

distribution at the beginning of our study in 1997. If these

two distributions are similar, it suggests that canopy height

at the beginning of the study was consistent with steady-

state dynamics. To evaluate the effect of sampling on the

projected steady-state distribution, we used a nonparametric

bootstrap simulation. Each iteration randomly sampled

n height transitions with replacement, where n is equal to

the observed number of height transitions in our data

(n = 177 750). We then generated the height transition

matrix and calculated the steady-state distribution of canopy

height. This procedure was repeated 2000 times to generate

a confidence interval for the projected steady-state equilib-

rium. This analysis assumes that 5 m grid cells have

independent height dynamics and that canopy height

changes can be modeled by a simple Markov process. That

is, the probability of height transition from time t to t + 1 is

dependent only on the state at time t, but not on previous

states. These same assumptions have been made in other

analyses of forest dynamics using Markov models (Hubbell

& Foster 1986; Hall et al. 1991; Tanaka & Nakashizuka

1997; Valverde & Silvertown 1997).

We defined canopy gaps by applying Brokaw�s (1982)

definition to high-resolution LiDAR imagery. Gaps are

openings in the forest canopy extending down to an average

height £ 2 m above ground (Brokaw 1982). Data from

LiDAR are ideal for distinguishing gap vs. non-gap areas,

because they minimize the potential for subjective assess-

ments to influence conclusions (see discussion in Clark &

Figure 2 Probabilities of canopy height class transitions in an old-

growth tropical rain forest. Data are from columns or rows of a

canopy height transition matrix for 444 ha of old-growth tropical

rain forest. Right column contains prospective height transition

probabilities and left column contains retrospective transition

probabilities. These probabilities estimate the likelihood of

occupying a future or past height class, given a current height

class. Current height classes for each panel are indicated by text

labels and vertical dashed lines.

Table 1 An aggregation of the canopy height transition matrix

2006 Canopy height class in 1997

< 2 2–5 5–10 10–15 15–20 20–25 25–30 30–35 > 35 n

< 2 0.061 0.028 0.008 0.004 0.003 0.002 0.002 0.001 0.000 577

2–5 0.104 0.079 0.026 0.013 0.013 0.011 0.008 0.005 0.003 2255

5–10 0.270 0.191 0.123 0.082 0.063 0.047 0.036 0.025 0.024 10 321

10–15 0.309 0.374 0.352 0.272 0.179 0.111 0.073 0.050 0.036 27 027

15–20 0.190 0.245 0.343 0.395 0.357 0.231 0.131 0.079 0.057 45 279

20–25 0.050 0.068 0.116 0.192 0.300 0.357 0.263 0.159 0.079 47 448

25–30 0.011 0.012 0.027 0.036 0.076 0.207 0.342 0.291 0.162 30 387

30–35 0.006 0.003 0.004 0.004 0.008 0.031 0.132 0.307 0.305 11 493

> 35 0.000 0.000 0.001 0.001 0.001 0.002 0.013 0.081 0.334 2963

n 538 2739 9475 22 200 42 988 50 127 33 346 12 224 4113 177 750

The study area was 444 ha of terra firme old-growth tropical rain forest at La Selva Biological Station, Costa Rica. Canopy heights were

defined as the mean height estimated using light detection and ranging remote sensing within 5 · 5 m cells (n = 177 750). Numbers are

transition probabilities from the column to row height class over 8.5 years. Diagonal bolded values are the proportion of sites that

experienced no net change in height class. Within each column, sites below the diagonal increased in height and sites above the bolded value

had height loss. Sample sizes in 1997 and 2006 are shown in the final row and column respectively. The full height transition matrix is in

Appendix S1.
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Clark 1992) and allow gap definitions to be applied

consistently throughout large areas. The smallest gap

observable in this study was a 5 · 5 m cell of 25 m2 (i.e.

a single pixel). Any of its eight neighbours with vegetation

height £ 2 m were considered part of the same Brokaw gap.

To characterize the frequency distribution of forest

canopy gaps, we used a power-law probability distribution.

The Zeta distribution is a discrete probability density. If the

number of gaps follows a Zeta distribution with parameter

k, the likelihood that gap size equals the integer k is:

f ðkÞ ¼ k�k

fðkÞ ð1Þ

where f (k) is the Riemann zeta function and is undefined

for k = 1. Larger values of k are associated with disturbance

regimes dominated by small canopy openings, whereas

smaller values increase the frequency of large events (Fisher

et al. 2008). Because gap areas in our study cannot take on

some integer values (i.e. numbers that are not whole mul-

tiples of 25 cannot be observed), we expressed gap area as

the number of pixels within each canopy gap. This trans-

formation does not affect the shape of the size-frequency

distribution, but does allow correct estimation of the power-

law exponent (Edwards et al. 2007). This distribution is a

discrete analog to the continuous Pareto distribution and is

appropriate for modelling the frequency of gaps in our

sample (Clauset et al. 2007; Edwards et al. 2007; Fisher et al.

2008; White et al. 2008). Because f (k) cannot be solved

analytically, we obtained maximum likelihood estimates

(MLE) for k by minimizing the negative log-likelihood

function (White et al. 2008). Standard errors for k were

calculated using 2000 nonparametric bootstrap samples

(Clark 2007).

We evaluated the goodness of fit of the power-law Zeta

distribution using 2000 parametric bootstrap simulations.

Each simulation generated a distribution of gap sizes under

the Zeta distribution with a scaling parameter equal to

the MLE from the observed data and sample size equal to the

observed sample size. Because the simulated data meet the

assumptions of the model, comparison of the observed model

likelihood to the distribution of likelihoods from simulated

data provides a measure of goodness of fit that is similar to

Akaike’s information criterion (AIC) (Burnham & Anderson

2002). Smaller values of the negative log likelihood indicate a

better fit. If the observed likelihood is significantly larger than

the expected value under the simulations, it would suggest a

poor fit of the model to the data. We therefore calculated a

one-tailed P-value by computing the probability of observing

a result ‡ the observed model likelihood within the 2000

simulations.

We conducted field studies to determine whether data

from LiDAR produced results that were consistent with

ground-based sampling and to ask whether the frequency

distribution of canopy gaps from 0.5 ha plots was represen-

tative of landscape forest dynamics. We measured canopy

height within 18 0.5 ha plots (Fig. 1). Each plot is

100 · 50 m, and was randomly sited within old-growth

forest but stratified by dominant topographic and fertility

gradients (Clark & Clark 2000). Measurements of vegetation

height (± 1 cm) between 1.50 m and 15.00 m were made on

a 5 · 5 m grid in each plot using a Hastings measuring pole

between June and August 2006. At each location on the

5 · 5 m grid, the height measurement was the maximum

vegetation height vertically above the point of measurement.

Field technicians visualized a 2 · 2 m quadrat projected

upward to the canopy using a hand-held clinometer. Holes in

the forest canopy that were smaller than 2 · 2 m were

treated as closed canopy. Sites with vegetation height outside

the measurable range were given discrete classifications (i.e.

�< 1.50 m� or �> 15.00 m�). There were 231 height measure-

ments within each 0.5 ha plot and a total of 4158 vegetation

height measurements were compared to LiDAR data.

To assess the ability of 0.5 ha plots to obtain unbiased

estimates of the gap size frequency distribution, we

identified gaps in the forest canopy within each plot using

the same criteria applied to LiDAR data. Each site on the

5 · 5 m field sampling grid within each plot was classified

as �gap� or �non-gap� based on the point estimate of

vegetation height. Sites with field measured vegetation

height £ 2 m were in Brokaw gaps and adjacent gap sites

were part of the same individual gap.

We anticipated that the largest forest gaps might not be

represented in 0.5 ha plots (Fearnside 2000; Clark 2004a;

Fisher et al. 2008). Such an outcome is expected based on

the smaller area sampled on the ground (9 ha) compared to

the landscape (444 ha), because the largest forest gaps are

rare, but could also occur if there is systematic bias between

smaller samples and larger spatial scales (Fisher et al. 2008).

We used simulations to determine whether gap size

frequency distributions were significantly different between

0.5 ha plots and the old-growth landscape. Each simulation

selected a random sample of n Brokaw gaps from the larger

number observed using LiDAR in 2006 and estimated the

parameter k of the power-law frequency distribution, where

n is the number of Brokaw gaps identified within plots using

field methods. This process was repeated 2000 times to

generate confidence intervals for the expected value of k
under the null hypothesis of no systematic difference

between 0.5 ha plots and the old-growth landscape. Because

bias should omit the largest forest gaps from plot-based

samples, it would produce a larger value for k in plots

relative to the landscape. We therefore computed the one-

tailed P-value corresponding to the probability of observing

a value for k within the 2000 simulations that is ‡ the

observed value within plots. The analysis allowed us to test
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the hypothesis that the absence of the largest gaps within

plots is a sampling artifact. All statistical analyses and

simulations were conducted using the R language and

environment for statistical computing version 2.7.2 (R

Development Core Team, 2008).

R E S U L T S

Pervasive local height changes figure prominently in the

dynamics of this forest (Fig. 2). Thirty-nine percent of the

old-growth landscape (173.8 ha) had net height changes

> 5 m, of which 18.5% (82.3 ha) were height increases and

20.6% (91.5 ha) height decreases. Most canopy gaps were

produced by vegetation below the main canopy and not by

taller canopy or emergent trees (Table 1, c.f. values in the

first row, i.e. gaps £ 2 m in height in 2006, were produced

by transitions from lower height classes in 1997). Many

height losses were not large enough to form gaps £ 2 m

after 8.5 years (Table 1, c.f. the relatively high probability of

height loss above the diagonal and below the first row). The

distribution of canopy height change had c. equal numbers

of positive and negative transitions and mean change to

canopy height between 1997 and 2006 was )0.32 m ± 6.80

SD (Fig. 3).

Less than 1% of the landscape was in Brokaw gaps in

both 1997 and 2006. There were 304 gaps within 444 ha of

old-growth forest in 1997 and 282 gaps in 2006 (mean gap

densities were 0.68 and 0.63 gaps ha)1 in 1997 and 2006,

Table S1). Gaps were transient features over the 8.5 year

study interval. Out of 1.35 ha that were within gaps £ 2 m

at the beginning of the study, only 0.08 ha were also in gaps

after 8.5 years. The remaining 1.26 ha (94%) recruited to

higher canopy positions and an additional 1.36 ha of new

gaps were formed. Size distributions of gaps identified using

LiDAR had medians of 25 m2 in both years. This is equal to

the smallest observable gap size in our data and is

commonly observed in gap size frequency distributions

(Hubbell & Foster 1986; Fisher et al. 2008).

The frequency of gap sizes was well-predicted by a

power-law (P for 1997 gap sizes = 0.482, P for 2006 gap

sizes = 0.511, P for 2006 field measurements = 0.450,

goodness of fit tests based on 2000 bootstrap simulations;

Fig. 4). Most gaps in the forest canopy were small

(Table S2). Maximum likelihood estimates of k were

2.34 ± 0.07 (SE), 2.24 ± 0.08 (SE) and 2.68 ± 1.09 (SE)

in 1997, 2006 and 2006 field measurements respectively.

There were 30 gaps identified within 18 0.5 ha plots using

field methods and median gap size was 25 m2. Comparison

of frequency distributions of gaps from field and LiDAR

data shows that the proportion of gaps of smaller sizes

within plots was representative of their abundance through-

out the landscape (Figs. 4, 5), although gaps > 125 m2 were

not represented within field data. However, simulations

demonstrate that the absence of gaps > 125 m2 within plots

is probably a consequence of the smaller area sampled (9 ha

vs. 444 ha), rather than systematic bias, because larger gaps

are rare within the old-growth landscape and the MLE of

the power-law exponent is marginally significantly different

between plots and the old-growth landscape in 2006 (one-

tailed P = 0.069, based on 2000 nonparametric bootstrap

samples). No comparison was made between field mea-

surements and 1997 LiDAR data because our plot-based

field measurements did not commence until after the 1997

LiDAR data collection.

The dominant right-hand eigenvector of the height

transition matrix was similar to the observed distribution

of canopy height in 1997 (Fig. 3). Because our analysis is

based on two time points, differences between the observed

distributions of canopy height and the steady state expec-

tation can only decrease through time (Fig. 3). However,

similarity between the distribution of canopy height in 1997

and the steady-state expectation suggests that canopy height

at the beginning of our study was consistent with steady-
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Figure 3 Distributions of canopy height and canopy height change

in and old-growth topical rain forest. Dashed lines are the observed

distributions of canopy height in 1997 and 2006 using data from

light detection and ranging (LiDAR) remote sensing. The shaded

region shows the minimum and maximum values for the expected

steady-state equilibrium based on the dominant right-hand

eligenvector of a height transition matrix and 2000 nonparametric

bootstrap simulations. The histogram is the distribution of changes

to canopy height from 177,750 observations of net height change

over 8.5 years.
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state dynamics. Although absolute differences between the

observed distributions of canopy height and the steady-state

expectation were small in magnitude, simulations indicate

that observed height distributions differed from the steady-

state expectation at some canopy positions (Fig. 3). Equi-

librium mean canopy height under the recent 8.5-year

disturbance regime is 19.6 m ± 6.7 SD, a height loss of

1.3 m from the observed distribution in 1997 and 0.7 m

from 2006 (Fig. 3). Height variance was greater in 1997

(7.1 SD) and 2006 (6.9 SD) than the equilibrium expecta-

tion (6.7 SD).

Based on a data set of 4184 ground-surveyed control

points, the relationship between field and LiDAR estimates

of ground elevation is: field measured elevation

(m) = 0.999 · LiDAR predicted elevation (m) ) 0.406 m,

Pintercept < 0.001 Pslope < 0.001, r2 = 0.994, RMSE =

1.85 m. There was a strong positive relationship between

the proportion of vegetation height < 15.00 m identified

using LiDAR and field measurements within 18 0.5 ha plots:

proportion from LiDAR = 0.134 + 0.737 · proportion

from field measurements, Pintercept < 0.001 Pslope < 0.001,

r2 = 0.859, RMSE = 0.027, n = 18 (Fig. 5).

D I S C U S S I O N

We used data from airborne LiDAR remote sensing to

quantify the structure and dynamics of an old-growth

tropical rain forest landscape. These sensors provide

spatially detailed measurements of canopy height and

ground elevation by recording the return-time of reflected

laser pulses and generate opportunities to characterize the

dynamics of forest ecosystems on landscapes. Our results

demonstrate that pervasive canopy height changes figure

prominently in the dynamics of this forest (Fig. 2). Most

canopy gaps were produced by vegetation that was shorter

than the main canopy layer and not by taller canopy trees,

suggesting that repeated disturbance events contribute to

formation of gaps £ 2 m in height. However, at larger

spatial scales (hundreds of ha), size frequency distributions

of canopy gaps were similar at two points in time separated

by 8.5 years (Fig. 4) and changes to canopy height that were

analysed using a height transition matrix demonstrate that

the distribution of canopy height at the beginning of our

study was close to the steady-state equilibrium expectation

(Fig. 3).
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Figure 4 Size frequency distributions of canopy gaps in an old-

growth tropical rain forest. The expected number of gaps of each

size is indicated by dashed lines, with a small horizontal offset for

clarity. Expected values are based on the maximum likelihood

estimate for the power-law Zeta distribution fitted to the data and

the observed sample size.

Figure 5 Validation of remote measurements in an old-growth

tropical rain forest. The proportion of canopy height measurements

< 15.00 m within 18 0.5 ha plots is highly correlated using field

measurements and light detection and ranging (LiDAR) remote

sensing. Canopy gaps > 125 m2 were not represented in plots, but

simulations suggest this is an artifact of the smaller area sampled,

because larger gaps are rare within the old-growth landscape and

the MLE of the power-law exponent is marginally significantly

different between plots and the old-growth landscape (one-tailed

P = 0.069, based on 2000 nonparametric bootstrap samples).
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Characterizing the distribution of canopy height change on

a forested landscape provides insights into the dynamics of

disturbance and regeneration at large spatial scales. We

developed predictions for the shape of the distribution of

canopy height change under three simple scenarios of

disturbance and regeneration that could be operating in the

Atlantic lowlands of Costa Rica. If the old-growth landscape

is recovering from previous disturbance, most height changes

would be positive, and the distribution could be right skewed.

In contrast, a landscape that has experienced catastrophic

disturbance between height measurements could have a left-

skewed distribution of canopy height change, as height losses

associated with canopy damage and mortality would occur

more frequently than increases under this scenario. If

changes to canopy height were close to the steady-state

equilibrium, height increases and decreases should occur with

similar frequency and the distribution would be symmetric

with an expected value close to zero. The empirical

distribution of changes to canopy height calculated using

data from LiDAR over 8.5 years most closely resembled our

prediction for steady-state dynamics. Height increases and

decreases occurred with similar frequency throughout the

old-growth landscape and the mean change to canopy height

was ) 0.32 m over 8.5 years (Fig. 3).

These findings suggest differences may exist in the

dynamics of disturbance and regeneration in the Atlantic

lowlands of Costa Rica and elsewhere in the Neotropics,

where studies have argued that mortality rates are increasing

and biomass accumulating throughout large areas (Phillips &

Gentry 1994; Phillips 1998). Our findings and other recent

work at this site (Clark et al. 2003), suggest that canopy

height in the old-growth landscape is close to the projected

steady-state equilibrium under the recent disturbance

regime. Comparison of the steady-state distribution of

canopy height with the observed distribution at the

beginning of our study indicates small, though potentially

meaningful, differences. If transition probabilities observed

over the 8.5-year interval remain similar, subcanopy sites

would increase in frequency and mean canopy height would

decrease through loss of the tallest forest trees (Fig. 3). This

indicates that the tallest trees lost height or died during the

8.5 year study and have not yet been replaced.

There are at least three caveats to our interpretation of

canopy height changes. First, the degree of natural variability

in canopy dynamics for an old-growth landscape is almost

completely unknown. Small but ecologically meaningful

changes could be obscured by our data and more frequent or

longer term observations may be required to identify

significant trends. For example, the observed 0.32 m

decrease to mean canopy height between 1997 and 2006 is

probably approaching the degree of measurement error in

our study. Under ideal conditions, LiDAR height measure-

ments are unbiased and precision is < 15 cm. But old-

growth rain forests on undulating terrain are not ideal

conditions. Extensive field studies and comparison of 4184

field measurements of subcanopy ground elevation and 4158

field measurements of canopy height to data from LiDAR

demonstrate that LiDAR measurements of ground elevation

and canopy height are highly precise and accurate under the

range of conditions within old-growth forest in this study,

but we lack the capacity to obtain field measurements that

are sufficiently more precise than LiDAR data, as well as a

process-based sampling model, to fully characterize the

consequences of measurement error from two LiDAR

systems on our conclusions. Nonetheless, if the observed

rate of decrease in canopy height (3.7 cm year)1) continued

for several decades, it would have significant impacts on

forest structure and carbon balance.

Second, whereas most previous studies of forest dynam-

ics are based on measurements of diameter growth and

individuals in permanent inventory plots, our conclusions

are from changes to canopy height observed using LiDAR

remote sensing. These two approaches may not produce

similar inferences if changes to mean canopy height are not

associated with productivity as measured by diameter

growth. It seems likely that changes to productivity should

be associated with canopy dynamics. Positive allometric

relationships between tree height, stem diameter and

biomass are the basis for inferring above-ground biomass

from diameter measurements (Brown 1997; Enquist &

Niklas 2001) and numerous remote sensing studies have

shown that canopy height can be a strong predictor of field-

measured above-ground biomass under a wide range of

structural conditions (Lefsky et al. 2002; Drake et al. 2003).

Third, interpretation of the distribution of canopy height

change is sensitive to the timing of previous disturbance. If a

severe event produced widespread canopy damage prior to

the first census in our study and the landscape were

recovering from this disturbance, most sites would increase

in height during our transition interval. However, even if a

disturbance occurred after the first canopy height census

and the landscape were recovering for most of the study,

most net height changes could be negative, even though the

landscape had been gaining height and is thus regenerating

in our terms.

The pervasive local height changes observed in this study

were unanticipated based on a classical understanding of the

gap disturbance regime (Brokaw 1982, 1985; Hubbell &

Foster 1986). We examined properties of a height transition

matrix whose elements describe the empirical probability of

transition between 1 m column and row height classes.

Columns of the transition matrix can be interpreted as

prospective height transition probabilities, because they

represent the likelihood of occupying future states, given a

current height class (Fig. 2). Rows can be interpreted as

retrospective projections of height transitions, because they
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describe probabilities of occupying past states, given a

current height class (Fig. 2). Out of the 3136 height class

transitions that were possible, 1788 of them were observed

during 8.5 years (Appendix S1). Because these transition

probabilities are calculated using net height changes over the

study interval, they underestimate the total frequency of

height transitions that occurred. For example, for sites

> 20 m tall in 1997, the probability of producing a canopy

gap £ 2 m in height is only 0.005 (Table 1). The true figure

is probably higher, as vertical height growth of 1–4 m per

year is common in high-light environments at La Selva

(Clark & Clark 2001) and small gaps created early in the

study interval are likely to have become filled through

upward or lateral growth. Nonetheless, canopy gaps were

more likely to be produced by vegetation that was shorter

than the main canopy layer, rather than by taller canopy

trees. This finding is consistent with earlier work at the same

site that has shown erratic trajectories characterize upward

height growth in juvenile trees (Clark & Clark 2001). Many

height changes also occurred in the upper canopy and were

not severe enough to form openings that extended to

ground level after 8.5 years. Thus, canopy height and

canopy height changes are continuously distributed in nature

and gaps at ground level are near one extreme in a spectrum

of forest dynamics.

This study demonstrates the capacity of LiDAR remote

sensing to produce measurements of forest structure and

dynamics that are consistent with ground-based field data in

a lowland Neotropical rain forest. Our findings show how

pervasive canopy dynamics can generate short-term stability

in a tropical rain forest landscape. The power of the

approach is in its ability to rapidly generate spatially explicit

measurements of canopy height that are objectively acquired

at large spatial scales. Integration of this technology with

long-term field studies will provide insights into the causes

and consequences of ongoing global changes to forested

landscapes.
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